TUGboat, Volume 0 (9999), No. 0

Typesetting product catalogs and other
database driven documents with the
speedata Publisher

Patrick Gundlach

Abstract

The speedata Publisher is a database publishing
system based on LuaTgX. Although it is a fully
commercial driven development, it is available under
an open source license (AGPL). The main goal of
the speedata Publisher is to provide the high quality
of TEX’s typesetting output while fulfilling the needs
of database publishing. The speedata publisher im-
plements its own language for defining layout rules.
This language is inspired by HTML, XSL and CSS
and specializes on layout generation and excels in
optimizing layout such as rearranging objects on the
page, whitespace optimization, copy-fitting and other
means.

LuaTgX has the ability to manipulate and build
the internal data structure that TEX uses to assem-
ble the pages and to break paragraph into lines. It
provides an extremely powerful environment for non
standard typesetting tasks by allowing to do all nec-
essary steps programmatically and still falling back
to TEX’s algorithms.

1 Introduction

KTEX is great if you want to write articles or books.
But what do you do if you want to publish product
catalogs or data sheets? Is TEX still the tool of choice
for this?

Difference between normal text and data
from databases

Product catalogs and similar documents are at best
created from data stored in a database. But what
distinguishes normal text from data retrieved from
databases?
The texts in a TEX document could look like
this
The quick\footnote{yes, really quick} brown
fox jumps...
while data from the database has a rather schematic
structure:
<productdata>
<articlegroup
name="interior lights"
number="123">
<article number="123-12345">
<propertyl>...</propertyl>
<property2>...</property2>
</article>
<article number="123-12346">

draft: July 9, 2020 11:31 71

<propertyl>...</propertyl>
<property2>...</property2>
</article>
</articlegroup>
</productdata>

Data processed in such systems is almost ex-
clusively formulated in XML, regardless how it is
stored on disk. Textual descriptions are generally
stored either as plain text or as HTML formatted
text, rarely as Markdown formatted text.

A fundamentally different approach is therefore
necessary to process data from databases. The pro-
cessing of documents is no longer linear, i.e. from
‘top to bottom’. Instead, the data must be assembled
according to a logic that differs from application to
application. From the data above it is not possible to
see how it should be represented. Whether typeset as
a table, a nicely designed page with several products
or as a data sheet - this cannot be seen from the
data alone.

1.1 Strict separation of data and layout

Apart from a few exceptions, no information about
the later appearance is found in the data. While
the strict separation is in theory a good concept, it
makes the typesetting part much harder. Sometimes
the separation is even impossible to maintain. For
example: when having a full page background image
and text to be placed in a good position, you need
some information coming from a human decision.

So how do you arrange the data on a page? Ac-
cording to which rules must the elements be placed?
To get to the solution, it helps to look over the shoul-
der of a graphic designer when creating a document
(e.g. a product catalogue). Professional graphic de-
signers work according to rules: How is a catalog
structured? Which products should be displayed in
which way? How many products fit on one page?
Which colors and fonts are used? Where is a page
break inserted?

The same rules are usually applied when filling
the pages, even if pages often look very different. If
you can now manage to write these often formal rules
in text form or in a programming language, you are
often already very close to the goal.

1.2 What software do you use for product
catalogs?

Adobe InDesign is certainly the software most of-
ten used to create documents with non-linear layout.
It is a professional desktop publishing software for
Windows and Mac. This very powerful program has
excellent graphic qualities and can be automated by
plugins. There is also QuarkXPress, which works

72 draft: July 9, 2020 11:31

similarly. However, these programs have limitations
in automation. In practice, these programs usually
work by using a database interface and page tem-
plates to fill pages. When finished, the pages need
to get finalized in a tedious manual process. This
workflow is suitable for documents that change only
occasionally, but quickly reaches its limits if the data-
base changes very frequently or if documents are to
be generated fully automatically.

1.3 TEX as an alternative?

For the readers of TUGboat, the question is of course
in how far TEX can be used here. The advantages of
TEX are well known to us:

e Full automation. You can set up the process so
that a document is generated at the push of a
button or at a given time.

e Free software. No dependence on proprietary
software. TEX can be used on any number of
computers without any additional license fees.

e High output quality. We all know that TEX’s
line breaking algorithm is superb.

e High speed. TEX can output up to 300 pages
per second on my old 2015 laptop with almost
no startup time. It is of course less than that
when you have more complex documents and
lots of fonts.

A few difficulties remain, however:

e XML encoded in UTF-8 as input format. TEX
is neither made for XML input nor for UTF-
8 processing. LuaTgX allows more than 256
glyphs in a font, so that helps a lot.

e Assembling the data. As seen, the input is not
linear. You have to go back and forth within the
data and fetch data from different XML elements
in the input.

e Output of HTML sources. Text in database
publishing is usually stored as plain text or as
HTML fragments. To render HTML, a CSS and
HTML parser is needed.

e Optimization of pages. A lot of application
demand some kind of whitespace optimization
such as adding images to the page until the text
completely occupies the space. Other applica-
tions require for example to reduce the text size
until the text fits on one page (copyfitting).

2 speedata Publisher

I have developed the speedata Publisher precisely
for the purpose of non-linear documents with high
demands for layout flexibility. It is an OpenSource
software based on LuaTgX. You can download it

TUGboat, Volume 0 (9999), No. 0

from the homepage|[1] and use it immediately without
any further installation of dependencies (not even
TEX is required, it is included in the ZIP file). A
comprehensive manual[2] describes in detail how to
use the software.

N h

data layout

output

In addition to the data, which must be avail-
able in XML format, the layout instructions are also
formulated in XML. This has several advantages.

e You stay in the XML environment, in which you
are already through the data anyway.

o With a schema, editing XML in a text editor is
also fun.

e You see syntax errors immediately.

e XML can be easily created and transformed from
programs.

2.1 The speedata layout language

Since the data can be structured as desired, the
layout language must be very flexible. It must also be
possible in the layout files to formulate and evaluate
the above-mentioned rules of a designer. Therefore
such queries to the data are necessary: how wide has
the object become? Is there still enough space on
the page?

Existing layout or formatting languages do not
allow such flexibility. (X)HTML has no programming
skills, XSL has no knowledge of layout, CSS is fine for
output, but has very limited programming abilities.
XSL-FO is rigid in its output and has no way to
respond to dynamic queries. In this respect, the
layout language is a mixture between the languages
shown here.

2.2 Hello, world

In the following sections I would like to give a small
insight into the layout language. The classic “Hello,
world” example serves as an introduction to speedata.

TUGboat, Volume 0 (9999), No. 0

In database publishing the input usually consists
of two files: the data file and the layout file. I ignore
images and font files for now.

The data file in the “Hello, world” example
consists of the simple line
<greeting>Hello, world!</greeting>

This file must be saved in an otherwise empty
directory under the name data.xml.

The layout file (1layout.xml) is already a bit
larger and looks scarier than it really is:

<Layout
xmlns="urn:speedata.de:2009/publisher/en"
xmlns:sd="urn:speedata:2009/publisher/ ~
functions/en">

<Record element="greeting">
<PlaceObject>
<Textblock>
<Paragraph>
<Value select="."/>
</Paragraph>
</Textblock>
</PlaceObject>
</Record>
</Layout>

If you have the speedata Publisher installed, you
can run the command sp to create a PDF file.

The processing starts at the root node in the
data file. In this case it is the element <greeting>.
It sets the “focus” to this element so you can access
it from the layout file. The software now looks for
an entry point in the layout file (<Record>) and
executes every command that is found within this
<Record> element. In this example, a text block is
output for the current element. The <Value> uses
the dot (.) to select the contents of the current
focussed element in the data file, in this case just the
text “Hello, world”. The dot is a so-called XPath
expression with which you can select data. A more
detailed description of the “Hello, world” example
can be found in the manual[3].

2.3 Dynamic layouts

To enable dynamic layouts, the speedata layout lan-
guage has programming options such as loops and
variables and the ability to query the appearance of
the page and objects that are put in virtual areas.
Together, these have enough expressiveness to im-
plement complex layout requirements. Like in TEX,
you can put any objects in a virtual area that is
not placed in the PDF. In TEX this is called a box,
here it is called a group. For example to compare
the width of a group to the size of the page and act

draft: July 9, 2020 11:31 73

on the outcome of the comparison you can use the
following test:

<Switch>
<Case test="sd:group-width(’mybox’) > s
sd:number-of-columns () ">
<!-- to wide, recalculate —-->
</Case>
<Otherwise>
<!-- great, fits on the page -->
<PlaceObject groupname="mybox" />
</Otherwise>
</Switch>

The requirements in practice are of course much
more complex. Interestingly, however, a few building
blocks are sufficient to create complex layouts. Many
functions in speedata Publisher fall into the category
syntactic sugar, i.e. not really necessary but helpful
constructions. For example, an image file can be
specified as a fallback for image output:

<Image file="myfile.pdf"
fallback="placeholder.pdf" />

This could also be written in a different way:

<SetVariable
variable="filename"
select="’"myfile.pdf’" />
<Switch>
<Case test="sd:file-exists($filename)">
<Image file="{ $filename }"/>
</Case>
<Otherwise>
<Image file="placeholder.pdf"/>
</Otherwise>
</Switch>

2.4 Grid typesetting

Objects can be placed anywhere on a page or in a
grid. Grids can be any size and define a coordinate
system that helps placing objects automatically and
ensuring that no object overlaps each other.

<Layout xmlns="urn:speedata.de:2009/ ~
publisher/en"
xmlns:sd="urn:speedata:2009/publisher/ v~
functions/en">

<SetGrid height="12pt" nx="10"/>
<Trace grid="yes"/>
<Pageformat width="8cm" height="4cm"/>

<Record element="data">
<PlaceObject column="3" row="2">
<Textblock>

74 draft: July 9, 2020 11:31

<Paragraph>
<Value>Hello world!</Value>
</Paragraph>
</Textblock>
</Place0Object>
</Record>
</Layout>

Hello world!

Using a grid has lots of advantages:

e Every object allocates an area on the page. It
is easy to check how big this area is.

e Objects that are placed on a grid cannot overlap,
unless forced to. The system moves the object
to the next free space.

e It is easy to achieve typesetting on a grid just
by letting the output start at a new grid row.

Of course not everything can be placed within a
grid. Logos or background images for example need
to be placed at absolute positions:
<!-- grid -->
<PlaceObject row="4" column="5">

<Image file="_samplea.pdf" width="5"/>
</PlaceObject>

<!-- absolute -->

<PlaceObject row="12mm" column="5cm">
<Image file="_samplea.pdf" width="5"/>

</PlaceObject>

2.5 Other features

The speedata Publisher has lots of features that
cannot be mentioned here. Nevertheless I'd like to
highlight some of them.

Accessibility It is possible to attach logical struc-
ture to the texts that are placed in the PDF so
it gets PDF/UA (Universal Accessibility) com-
pliant.

HTML input The speedata Publisher comes with
a CSS and HTML parser that lets you typeset
documents written in HTML as they would look
in a browser.!

1 This feature is under development, so not all ascpects
are implemented yet.

TUGboat, Volume 0 (9999), No. 0

Master pages Page template including logos and
other static and dynamic information can be
defined together with arbitrarily complex con-
ditions when the page will be chosen by the
software.

Page areas You can define areas on the page to let
text flow from one area to the next area. This
is used in magazine typesetting.

HTTP assets Images and all other resources can
be loaded on the fly from the web. This makes it
easy to use a digital asset management software.

Image wrapping Images can be (automatically)
enriched with information where text can wrap
around the image. The paragraph shape is cal-
culated automatically.

Advanced tables The speedata Publisher does not
use any of the TEX’s table code. It ships with
its own model that is inspired by HTML and
comes with static and dynamic headers and
footers, controllable page breaks, running totals,
complex table cell backgrounds and other fancy
features.

Server mode Included in the Publisher is a REST-
API that listens on incoming HTTP-requests
to start publishing runs. This makes it easy
to build a server infrastructure for typesetting
jobs.

Strong quality assurance There are more than a
hundred of documents that are automatically
compared before making changes to the software.
That way I can assure that old documents can
be typeset without changes in future versions.

3 speedata and LuaTgX

As mentioned above, LuaTEX is used as backend for
speedata. Almost all parts of the speedata Publisher
is written in Lua. No code from plain, ConTEXt or
IMTEX formats are used in the software. There is a
tiny TEX wrapper that jumps directly into the Lua
mode and does all processing form there.

\catcode ‘\{=1

\catcode ‘\}=2

\directlua{require("publisher.spinit")}

\end

All other functions are on the Lua level. These
are, for example

Parse the XML files (data and layout)

Read in all images and font files

Executing the program statements in the layout
Assembly of the data structures for TEX

TUGboat, Volume 0 (9999), No. 0

e ... and much more

Some of the routines are written in the pro-
gramming language Go and included as a library
at runtime. This library handles the loading of re-
sources via HTTP (including caching) and parsing
of HTML and CSS files. It was easier to use existing
libraries for this tasks than to rewrite them in Lua
from scratch.

3.1 TgX without \TEX

If no input comes in form of TEX code, how is Lua-
TEX able to typeset text and place other objects into
the PDF?

TEX normally reads the files with the macro
instructions (e.g. \section) and stores the contents
as so-called nodes after some processing. These are
the smallest data units, which store e.g. a character
or a glue. With these data units everything that is
visible in the output (along with some other technical
information) is represented. These data structures
can then be used to create DVI or PDF output.
Thanks to LuaTgX, these nodes can also be created
and manipulated in Lua. Thus, the main part of
the Lua program code consists of generating such
nodes from the input data and the instructions of
the layout file.

Node lists are linked lists of single nodes, which
can also contain lists themselves. For example the
contents of a horizontal box \hbox{...} is a list
and the box itself can be part of another list. Each
node consists of different fields, depending on what
is stored. For example, the character “H” could be
represented as a node as follows.

type: glyph
char: 72

font: 1

lang: 2

prev [next

Such a character could easily be created with
the following Lua commands (the double dash -- is
a Lua comment):

h = node.new("glyph")
-- 72 is the ascii code for H

h.char = 72
h.font =1
h.lang = 2

You can chain the nodes e.g. by simply setting
the prev and next pointers:

-- as above

e = node.new("glyph")
e.char = 101

e.font = 1

draft: July 9, 2020 11:31 75

]
N

e.lang

h.next = e

e.prev = h
type: glyph type: glyph
char: 72 char: 101
font: 1 font: 1
lang: 2 lang: 2
prev | next prev | next

In this way, entire nodelists can be generated.

glyph | | glyph | | glyph || glyph | | glyph glue
H e | | o} (space)

glyph | penalty| | glue glue
(parfill- | | (right-
skip) skip)

glyph | | glyph || glyph | | glyph
w 0 r | d

We are close to a nodelist that can be used for
output. Three things are missing from a “perfect”
paragraph:

1. hyphenation
2. kerns
3. ligatures

Hyphenation: there is a function for TEX’s
hyphenation routine: long.hyphenate(nodelist).
When called, LuaTEX changes the nodelist and in-
serts so called discretionaries that signal a hyphen-
ation point.

Kerns and Ligatures: there are two very helpful
routines that add ligatures and kerns to the nodelists:
node.ligaturing(nodelist) for ligagures and for
kerns node.kern(nodelist). The former one re-
place some glyph nodes with ligatures, so that they
can be dissolved again when a word is hyphenated.
The latter inserts small (possibly negative) spaces
between glyphs. As for ligatures, one could still
argue whether it is still appropriate to do this via
the TEX mechanism. OpenType fonts often contain
other ligatures that would have to be translated for
TEX’s ligature mechanism. Furthermore, libraries
like Harfbuzz offer much more powerful functions for
ligatures.

If hyphenation, kerns and ligatures are inserted,
you can use

tex.linebereak(nodelist, parameter)

to create a paragraph broken by TEX. The param-
eters specify the values for paragraph settings like
emergencystretch or linepenalty but also the para-
graph style (parshape). The result is a vertical box
with single lines in horizontal boxes.

7?6 draft: July 9, 2020 11:31

3.2 Output of nodelists

After nodelists have been assembled, they can be out-
put. The speedata Publisher collects all material for
the pages and outputs it in one go. tex.shipout (n)
outputs the TEX box with the number n:

nodelist = node.vpack(nodelist)

tex.box[1234] = nodelist

tex.shipout (1234)

Before output, however, structural elements may
have to be written to the PDF for PDF/UA. To
do this, the content of the page is analyzed and
a PDF object structure is written to the PDF for
accessibility purposes.

3.3 Fonts and languages

In the example above, we just used some dummy val-
ues for ‘font” and ‘lang’. Usually TEX loads the font
files or language patterns with \font and \patterns.
The speedata Publisher has its own routines for both
to allow UTF-8 input, similar to Fontspec or Luaot-
fload for ITEX.

A new language can easily be loaded into Lua-

TEX:

local 1 = lang.new()
1l:patterns(pattern)
local id = 1:id()

Here pattern is the content of a pattern file.
Loading a new font is a bit more complicated. The
fontforge library that is part of LuaTgX is used to get
information about (OpenType) fonts. An alternative
routine based on Harfbuzz is planned, which is part
of LuaTgX since the last TEXlive version.

font, err = fontloader.open(filename_with_path)
fonttable = fontloader.to_table(font)

fonttable now has all font properties in an
extensive table, which can be made available to TEX:

local f = { }

f.name = fonttable.fontname
f.fullname = fonttable.fontname
f.designsize = size

f.size = size

f.direction =0

f.filename = fonttable.filename_with_path
f.type = ’real’

f.characters = {
-- code for all glyphs in a font
}

-— define the font:
fontid = font.define(f)

TUGboat, Volume 0 (9999), No. 0

You can use the font id in the nodelists above.

3.4 PDF specials

The PDF contains a lot more information than that
which is visible at a first glance. For example book-
marks, hyperlinks, document structure for accessibil-
ity, attached documents for electronic invoices are
elements that needs to be written into the PDF.
Thanks to PDFTEX and the API in LuaTgX, this is
an easy task once the required syntax for these PDF
objects are known. They can be written to the PDF
as follows:

pdf.obj(...)

This function has several different parameter
that allow compressed or uncompressed text or data
to be written as a simple or a stream object.

There are also visible objects that cannot be
created with TEX’s graphics routines. Colors, trans-
parency, shades and other objects need to be writ-
ten with PDF drawing instructions. For example
the borders in the following picture need to drawn
with instructions such as 0 0 m 1 5 1 which means
“move to position (0,0) and draw a line to (1,5)”.
There are operators to draw lines and Bézier curves,
fill paths, clip contents from inside and outside of
given areas and many other drawing operators.

These operation can be inserted into the PDF
by whatsits:

n = node.new("whatsit","pdf_literal")
n.data = "0 Om1 5 1"

and then insert this whatsit into the nodelist.

order

4 Outlook and conclusion

Of course I can only scratch the surface in this article.
LuaTgX and also the speedata Publisher are two very
powerful pieces of software. The speedata Publisher
would not be possible in this way without LuaTgX.
There is no need to understand TEX’s macro language
to use TEX, even for the programmer.

The speedata Publisher is in active development
since 2009. I have a lot of plans for the future de-
velopment (such as Harfbuzz integration), but the
(paying) customers are those, who drive most of the
development of new features.

TUGboat, Volume 0 (9999), No. 0

I’d like to invite you to try out the software, ask
questions, look at the showcase on the homepage or
just browse the manual for inspiration.

To close with Donald E. Knuth’s words: Go
forth now and create masterpieces of the publishing
art!

References

[1] speedata homepage. https://www.speedata.
de.

[2] speedata manual. https://doc.speedata.de.

[3] “Hello, world” example in the speedata manual.

https://doc.speedata.de/publisher/en/
helloworld/.

o Patrick Gundlach
Odilostrafle 43
13467 Berlin
Germany
gundlach (at) speedata dot de
https://www.speedata.de/

draft: July 9, 2020 11:31

77

https://www.speedata.de
https://www.speedata.de
https://doc.speedata.de
https://doc.speedata.de/publisher/en/helloworld/
https://doc.speedata.de/publisher/en/helloworld/

	Introduction
	Strict separation of data and layout
	What software do you use for product catalogs?
	TeX as an alternative?

	speedata Publisher
	The speedata layout language
	Hello, world
	Dynamic layouts
	Grid typesetting
	Other features

	speedata and LuaTeX
	TeX without \TeX
	Output of nodelists
	Fonts and languages
	PDF specials

	Outlook and conclusion

