
212 TUGboat, Volume 39 (2018), No. 3

TEX Gyre text fonts revisited
Bogusław Jackowski, Piotr Pianowski,
Piotr Strzelczyk

1 Introduction
The collection of the TEX Gyre (TG for short) family
of text fonts, an extensive revision of the freely avail-
able 35 base PostScript fonts, was released by the
GUST e-foundry in 2006–2009 [4, 6]. Having finished
this task, the GUST e-foundry team started to work
on the math companion (in the OpenType, OTF, for-
mat [7]) for the TG text fonts [5]. Work on the math
companion was finished two years ago. It resulted
in the broadening of the repertoire of glyphs that
could be used not only in math mode but also in text
mode in technical documents. Hans Hagen, inde-
fatigably coming up with interesting ideas, proposed
to migrate the relevant glyphs to the text TG fonts.
Needless to say, we seized on Hans’s suggestion.

The first step was to decide which glyphs are
to be migrated (and/or improved). Obviously, the
list of candidates grew and grew. All in all, about
1000 glyphs were designated to be added, mostly
geometrical and math symbols. A math companion,
so far, was provided only for serif fonts, thus the
consistent enhancement of the repertoire of the sans-
serif fonts was a working test for our font generator—
cf. Section 2 below.

We started with two fonts— the serif TG Pagella
and the sans-serif TG Adventor. The results were
satisfying. Now we are ready for the next step: to en-
hance similarly the rest of the TG family (TG Chorus,
which is hardly suitable for technical texts, needs
an individual approach). We believe, however, that
we’re over the hump. Below, we describe the most
difficult and thus most interesting (to us) aspects of
this stage of the TG project.

2 The MetaType1 engine
The scheme of the new workflow for the authors’
MetaType1 software is depicted in Figure 1.

The main change in the engine consists of the
replacement of several components (AWK plus Perl
plus T1utils) by Python code with the FontForge
library (finally, the library is available both under
Unix and Windows). However, the FontForge library
does not allow for sufficiently detailed control over
the contents of the AFM and PFM files being gener-
ated, necessitating additional steps for fine tuning
these files (dashed arrows in Figure 1).

First published in Die TEXnische Komödie 3/2018, pp. 11–20.
Reprinted with permission.

METAPOST

font base
METAPOST

source(s)
configuration

files

PFB file

TFM file

ENC and MAP
files (for dvips)

AFM file

fixed AFM file

PFM file

fixed PFM file
OpenType

font file (OTF)

FFDKO, i.e., Python scripts
employing FontForge library

EPS file 1
EPS file 2
EPS file n

auxiliary(OTI)file

...

Python

Python

METAPOST

Figure 1: New MetaType1 engine: working scheme

The converter from Type 1 fonts to MetaType1
sources, implemented in AWK plus T1utils, has not
yet been rewritten. We plan to rewrite it in Python
with the FontForge library and enhance it to also
process TrueType and OpenType files.

Of course, MetaPost is still the main module for
generating glyph shapes. However, instead of spread-
ing the auxiliary information into several output files
(including EPS files), a single auxiliary output file,
containing all the information needed for further pro-
cessing, is generated. We will refer to this file as
an Olio Typographic Information file, OTI. (Olio is
a traditional name for a potpourri; it appears, e.g.,
in Robert Burns’s Address to a Haggis —“French
ragout or olio”). An OTI file is a container of “as-
sorted bites and fragrances”, indeed. Below is a
fragment of an OTI file for TG Pagella Regular.
FNT FAMILY_NAME TeX Gyre Pagella
FNT HEADER_BYTE49 TeX Gyre Pagella
FNT GROUP_NAME TeX Gyre Pagella
FNT STYLE_NAME Regular
. . .
FNT WEIGHT Regular
FNT ITALIC_ANGLE 0
. . .
GLY A CODE 65
GLY A EPS 165
GLY A ANCHOR INBAS ALT.ogonek 623 -143
GLY A ANCHOR INBAS BOT_MAIN 392 -143
GLY A ANCHOR INBAS TOP_MAIN 392 819
GLY A WD 778 HT 692 DP 0 IC 6 GA 392
GLY A HSBW 778
GLY A BBX 15 -3 756 700
. . .
FNT FONT_DIMEN7 0.83
FNT DIMEN_NAME7 (extra space)
FNT FONT_DIMEN22 2.5
FNT DIMEN_NAME22 (math axis)
FNT HEADER_BYTE72 234

Bogusław Jackowski, Piotr Pianowski, Piotr Strzelczyk



TUGboat, Volume 39 (2018), No. 3 213

Each line of the OTI file contains either global
information, concerning the whole font (prefix FNT),
or local, concerning a given glyph (prefix GLY fol-
lowed by the glyph name). We will not dwell too
much on the details of the structure of OTI files as
it will be documented elsewhere.

3 The glyph repertoire
As mentioned above, one of the important reasons
for the “face-lifting” of the TG text fonts was our
efforts on TG math fonts. Many symbols do not need
the mathematical extension of the font structure (the
MATH table in OTF files), but still prove useful in
typesetting technical texts; for example, mathemati-
cal symbols (operators, relational symbols), arrows,
geometrical symbols, etc.— see Figures 2 and 3.
The number of glyphs grew from circa 750 to more
than 1600, and may grow further in the future (see
Section 5).

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

Figure 2: Sampling of added glyphs: TG Pagella
regular (top) and bold (bottom)

The symbolic glyphs in the TG math fonts were
designed only for regular serif variant fonts. The
code, however, turned out to be flexible enough that
with a few changes it was possible to generate bold
and sans-serif variants.

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

↞↠⊶⊷↬↫⇚⇛⇜⬳⬿↜
∫∬⨌∮∰∲∳∡≼≽⋀⋁⋂⋃
▒░▓⬚▭▬▪▫●□△▶▷▽◀◁

Figure 3: Sampling of added glyphs: TG Adventor
regular (top) and bold (bottom)

Apart from enriching the repertoire, many glyphs
were amended, due to, among other reasons, employ-
ing FontForge which, by default, minutely checks

Figure 4: Default math-oriented glyphs (left) vs.
old glyphs produced by the OTF ss10 feature (right)

glyph outlines. For example, a tilde in TG Adventor
was drawn from scratch, axes in several glyphs were
corrected and so on.

Math-oriented glyphs existing already in the
text fonts have been replaced with slightly differ-
ent forms, better suited for math formulas. The
old forms can be reached, if required, by using the
OTF mechanism called features [2, 7, 8], namely, the
‘stylistic set’ feature ss10. Moreover, the Pagella
Greek alphabet was taken from TG Pagella Math,
that is, from Diego Puga’s excellent Mathpazo with
the kind permission of the author who agreed to
let us use a fragment of his font under the GUST
Font License (GFL [3]). The latter change involves
significant change of the metric data. We are gen-
erally very reluctant to introduce such changes, but
believe that the elegance of the Mathpazo Greek
alphabet justifies that decision. Some glyphs from
the Greek alphabet of TG Adventor (programmed
in MetaType1) required improvements which also
implied changes in metric data.

Rolling with the punches, we decided to abandon
our initial idea of full compatibility with the metrics
of the renowned Adobe 35 fonts [1]. The reason is two-
fold: first, Adobe metric data is, as we pointed out in
the documentation of the TG fonts [4], itself inconsis-
tent in several cases; second, preserving full compati-
bility makes sense only when the relevant metric files
are used for previewing PostScript files to be printed
on a printer with built-in Adobe Type 1 fonts. The
TG fonts might have been used for such previewing,
but, as it turned out, they have not (either in Ghost-
script or in TEX Live; for example, the URW replace-
ments for the Adobe 35 are typically used). Eventu-
ally, we decided to tune the TG metric data according
to our experience whenever required. We believe that
we will manage to avoid such changes in the future.

4 The font structure
The structure of the OTF fonts has been enhanced
with the “backward compatible math style” feature
(ss10) mentioned above and, moreover, with the
mechanism of anchors, although the name “snaps”
seems to us to be more accurate. Anchors enable
putting accents precisely over glyphs. Roughly speak-
ing, the anchor mechanism can be considered the
analogue of the TEX \accent mechanism. Anchors,
however, are implemented in a much more intricate

TEX Gyre text fonts revisited



214 TUGboat, Volume 39 (2018), No. 3

way: three features, obscurely documented in [2, 8],
namely, ccmp (glyph composition / decomposition),
mark (mark positioning, precisely, accent-to-base or
mark-to-base positioning), and mkmk (mark-to-mark
positioning, or, in other words, accent-to-accent posi-
tioning)1 are used for this purpose, and yet the OTF
anchor mechanism turns out insufficiently efficacious.

We were surprised by the complexity and la-
boriousness of the implementation of such a simple
concept. Having read the explanations below, the
reader and our virtual successors should feel fore-
warned and thus be less surprised.

“Anchors” or “marks” are actually pairs of num-
bers (planar points); the features mark and mkmk are
supposed to position two glyphs in such a way that
the respective anchors of the accent and accentee
coincide. The former feature is used to position ac-
cents over or below base glyphs, the latter to position
accents over or below accents. In the TG fonts, fol-
lowing common practice, only so-called combining
accents (a subset of the block of combining diacriti-
cal marks [9]; that is, zero-width glyphs, protruding
entirely to the left) are used for accenting and, thus,
are equipped with anchors. In order to reduce the
amount of anchor data, we decided to use as anchored
accentees only accentless Latin letters plus letters
“welded” with cedilla, horn, ogonek, and, additionally,
l·, L·, ł, Ł, ø, and Ø.

The ccmp feature enables the transformation of
the input stream, namely: replacing glyphs and as-
sembling a series of glyphs into a composed character
or disassembling a composed character into a series
of glyphs. The respective substitutions, in principle,
must be defined in the font. Some engines, however,
know better and perform such substitutions even if
the font lacks relevant data. For example, Microsoft
Word replaces ‘i’ (U+0069) followed by a combining
top accent, say ‘caroncomb’ (U+030C), by a single
glyph ‘icaron’ (U+01D0), provided that the latter is
available in a given font; no further information, in
particular, no ccmp feature, is required. Similarly,
X ETEX joins accents with the base glyph into a single
glyph, provided that the assembled form is present in
the font; otherwise, accents are placed using anchors.
This behaviour cannot be turned off—X ETEX simply
uses system libraries which know better. . .

In the TG fonts, the ccmp feature is used to disas-
semble accented glyphs (but not glyphs with cedilla,
ogonek, or horns) and to join into a single glyph let-
ters followed by combining cedilla, ogonek, or horn
(provided that the resulting glyph belongs to the

1 There is yet one more anchor feature mset (mark posi-
tioning via substitution) meant for handling peculiarities of
the typesetting of Arabic texts.

repertoire of the font); otherwise, anchors are used.
Moreover, ccmp is used to replace certain base glyphs
and accents by their alternative forms; for example,
‘i’ and ‘j’ in the vicinity of top combining accents are
replaced by their dotless forms, while top combining
accents following an uppercase letter or ascender are
replaced by their ‘high’ (flattened) variants.

The process of accenting using anchors, seem-
ingly a trivial task, is, in fact, quite sophisticated.
The Unicode standard recommends that if a text
processor is being fed with a stream of text data
containing a glyph, having assigned a Unicode slot,
which is followed by a series of combining accents,
then the text processor may position these accents
over the main glyph [10], provided that the font con-
tains the relevant positioning information. A typical
example of the application of the anchor mechanism
involving the ccmp+mark+mkmk features (as imple-
mented in the new TG fonts) is depicted in Figure 5.

Figure 5: Anchor mechanism scheme—an example
(explanations in text)

In the picture, feature names written in a small size
denote the type of anchor (mark), large ones denote
application of the respective features, labels ‘TOP’
and ‘BOT’ are defined by the user; the assumed input
string is: ‘i’, ‘macronbelowcomb’, ‘caroncomb’, ‘tilde-
comb’ (that is: U+0069 U+030C U+0331 U+0303).
The anchors have descriptors given in braces: donor
and acceptor (taken from physical chemistry).

The process of accenting works here as follows:
• first, the ccmp feature enters the scene: the letter
‘i’, when followed by a combining upper accent,
is replaced with ‘dotlessi’;
• next, the mark feature acts: the ‘caroncomb’

glyph is placed over ‘dotlessi’ in such a manner
that its ‘TOP’ donor anchor coincides with the
‘TOP’ acceptor anchor of the glyph ‘dotlessi’; as
a result, both anchors become inactive;
• next, the mark feature enters once again: the
‘macronbelowcomb’ glyph is placed below ‘dot-
lessi’ in such a manner that its ‘BOT’ donor

Bogusław Jackowski, Piotr Pianowski, Piotr Strzelczyk



TUGboat, Volume 39 (2018), No. 3 215

Figure 6: Peculiar positioning of certain accents (TEX
source—right; the result— left)

anchor coincides with the ‘BOT’ acceptor an-
chor of the letter ‘dotlessi’; as a result both
anchors become inactive;
• finally, the mkmk feature intervenes: the ‘tilde-
comb’ glyph is placed above the newly placed
‘caroncomb’ in such a manner that its ‘TOP’
donor anchor coincides with the ‘BOT’ acceptor
anchor of the ‘caroncomb’ glyph; as a result,
both anchors become inactive;
• the resulting assembled glyph still has two active
anchors, ‘TOP’ and ‘BOT’, that could be used
by the mkmk feature, provided that the relevant
glyphs appear in the input stream (immediately
after ‘tildecomb’ in this case).
As one can see, the process of assembling glyphs

using anchors is fairly complex. It should be admit-
ted, however, that it enables handling such peculiar-
ities as replacing a caron glyph with a comma-like
variant if glyphs ‘l’, ‘L’ or ‘J’ are to be accented with
caron, replacing a comma accent by a turned comma
accent above ‘g’ (normally comma accent goes below
a letter), or a singular positioning of a dot below
accent at a letter ‘y’, as shown in Figure 6.

Unfortunately, not all cases of practical impor-
tance can be reliably handled. A notable example is
the replacement of letters ‘i’ and ‘j’ by their dotless
forms: the result depends to a large extent on the
order of the glyphs in the input stream. In Figure 7,
six cases are shown with different orders of glyphs
in the input stream, namely (here, i stands for the
letter ‘i’, c stands for ‘caroncomb’, and m stands
for ‘macronbelowcomb’): 1. ic ; 2. imc ; 3. immc ;
4. immmc ; 5. immmmc ; 6. icccmmmm. Observe a
malpositioned caron in case 5— it is the result of our
“design decision”. The replacement ‘i’→‘dotlessi’ is
performed only if the top accents occur close to the
letter ‘i’, preferably immediately after it. The OTF
feature specification permits contextual replacements,
that is, a certain number of bottom accents may pre-
cede the top one, but the preceding sequences must
be enumerated explicitly. We decided to limit the
length of the context to three glyphs (case 4 in Fig-
ure 7). If more bottom accents intervene between the
letter ‘i’ and the top accent, the replacement is not

Figure 7: Troublesome replacement of ‘i’ by ‘dotlessi’
(explanations in the text)

performed and the glyphs are just overlapped (case 5
in Figure 7; as mentioned, combining accents have
zero width and protrude to the left). Some fonts de-
fine longer contexts (for example, Charis SIL), but we
decided that for practical purposes three is enough.

In order to avoid such situations, we recommend
that the top accents go first, then the bottom ac-
cents (case 6 in Figure 7). The problem with our
recommendation is that the order can be reversed by
a text processing agent: according to the Unicode
Standard recommendation, the bottom accent should
go first and “canonical ordering behavior cannot be
overridden by higher-level protocols” [11]. Some text
processing agents apply the algorithm defined in [11]
at the phase of reading the Unicode stream. In
general, a typesetter cannot rely safely on the text
processor. Even in TEX, the same text may be pro-
cessed differently depending on the implementation.

In TEX, selected features, such as ccmp, mark,
mkmk, etc., can be switched on or off on demand. Not
all text processors offer such a possibility. A notable
example is Microsoft Word which has these features
switched on by default (it is not obvious whether it
makes use of the Unicode ordering algorithm). As
was mentioned, not all engines (in particular Micro-
soft Word, but also X ETEX) obey rules coded in the
features ccmp, mark, mkmk. Incidentally, Figure 7
was created using LuaTEX.

In our opinion, the complexity of the implemen-
tation of anchors, resulting in a variety of approaches
and implementations, is caused by the oversimpli-
fied mechanism of the OTF specification: the only
allowed operations on a glyph are (re)positioning
and substitution which is directly related to the OTF
table structure and the basic tables, namely, GPOS
and GSUB. The former operation is restricted merely
to shifting, the latter to one-to-one, one-to-multiple
and multiple-to-one replacements (which excludes
reordering). Replacements can be either explicit or
contextual, which adds complexity and does not help
too much. In particular, fairly aged, not to say fos-
sil, regular expressions are not allowed in contextual
replacements.

TEX Gyre text fonts revisited



216 TUGboat, Volume 39 (2018), No. 3

5 Plans for the future
The next step (besides obvious cleaning of the sources,
both Python and MetaPost) will undoubtedly be ex-
tending in a similar way the remaining TG text fonts,
both sans-serif (Heros) and serif (Bonum, Cursor,
Schola, and Termes). TG Chorus, as a chancery font,
is not suitable for such an extension. We consider
naming the stylistic features used in the TG fonts—
it needs consideration, however; wrong names may
likely introduce mess rather than order.

Having gathered experience with the text fonts,
we would like to revisit the TG math fonts, with
attention paid to sidebearings and math “staircase”
kerns.

Moreover, we plan to remove all non-Python
modules. As was mentioned, the path MetaType1
sources → OTF and Type 1 fonts is governed by
Python; the reverse path, OTF and Type 1 fonts
→ MetaType1 sources, currently employs AWK and
T1utils, thus, it cannot be used for converting TTF
and OTF fonts to MetaType1 sources. We believe
that the employing of FontForge (as a Python library)
is the remedy.

We have no clear answer to the question of
whether “small figures”, accessible by features subs
(subscripts), sups (superscripts), sinf (scientific infe-
riors) numr (numerators), and dnom (denominators),
should be included in the text fonts; in math fonts
math sub- and superscripts can be used instead. If
we include these glyphs, then the next question arises:
do we need special figures for small caps, smcp, other
than, traditional in the TEX realm, old-style figures,
also dubbed nautical? And do the small figures need
variants commonly used for “normal” figures, that is,
lnum (lining figures), onum (old-style figures), pnum
(proportional figures), and tnum (tabular figures)?
We are somewhat reluctant to add such a hodgepodge
to an already intricate font structure.

6 Acknowledgements
We are indebted to all people and TEX groups that
have supported our font enterprises. Almost all the
GUST e-foundry projects were kindly supported by
the Czechoslovak TEX Users Group CS TUG, the
German-speaking TEX Users Group DANTE, the
Polish TEX Users Group GUST, the Dutch-speaking
TEX Users Group NTG, TUG India, UK-TUG, and,
last but not least, TUG. In a few cases, GUTenberg,
the French-speaking TEX Users Group, supported
us too.

The exceptional, personal thanks we owe to
our friends who have kept our spirits up for many
years and tirelessly encouraged us to work on fonts:
Hans Hagen, Johannes Küster, Jurek Ludwichowski,
Volker RW Schaa, Jola Szelatyńska, Ulrik Vieth—
hearty thanks! All trademarks belong to their respec-
tive owners and have been used here for informational
purposes only.

References
[1] Adobe Systems Inc. Adobe metric files.

ftp://ftp.adobe.com/pub/adobe/type/win/all/
afmfiles/base35/

[2] Adobe Systems Inc. Feature file syntax.
adobe.com/devnet/opentype/afdko/topic_
feature_file_syntax.html

[3] GUST e-Foundry. GUST Font License.
gust.org.pl/projects/e-foundry/licenses

[4] B. Jackowski, J. M. Nowacki, and P. Strzelczyk.
TEX Gyre fonts collection.
gust.org.pl/projects/e-foundry/tex-gyre

[5] B. Jackowski, P. Strzelczyk, and P. Pianowski.
TEX Gyre math fonts collection.
gust.org.pl/projects/e-foundry/tg-math

[6] B. Jackowski, P. Strzelczyk, and P. Pianowski.
GUST e-foundry font projects.
TUGboat 37(3):317–336, 2016.
tug.org/TUGboat/tb37-3/tb117jackowski.pdf

[7] Microsoft Corp. OpenType Font Format, ver. 1.60,
ISO/IEC 14496-22.
microsoft.com/typography/otspec160/

[8] Microsoft Corp. Registered features. microsoft.
com/typography/otspec/featurelist.htm

[9] Unicode Consortium. Combining diacritical marks.
unicode.org/charts/PDF/U0300.pdf

[10] Unicode Consortium. The Unicode Standard
10.0.0; chapters 2.3 Compatibility Characters,
2.11 Combining Characters, 2.12 Equivalent
Sequences and Normalization.
unicode.org/versions/Unicode10.0.0/ch02.pdf

[11] Unicode Consortium. The Unicode Standard
10.0.0; chapter 3.11 Normalization Forms.
unicode.org/versions/Unicode10.0.0/ch03.pdf

� Bogusław Jackowski
Piotr Pianowski
Piotr Strzelczyk

Rzeczypospolitej 8
80-369 Gdańsk, Poland
b_jackowski ,

p.pianowski ,
p.strzelczyk
(at) gust dot org dot pl

Bogusław Jackowski, Piotr Pianowski, Piotr Strzelczyk


