
TUGboat, Volume 34 (2013), No. 3 263

How to make a product catalogue that
doesn’t look like a dissertation

Jason Lewis

Abstract

Needing a robust way to produce a catalogue from
a product database, Adobe InDesign, DocBook and
LATEX were evaluated. LATEX was favoured due to its
layout flexibility and non-proprietary nature. The
challenge was to query the database and produce
suitable LATEX for the catalogue

Native LATEX was unable to query the database,
so templating tools were investigated. Template
Toolkit (TT) was chosen over PHP, favouring its Perl
roots and broader applicability. Using TT and DBI for
querying the database a dynamically generated LATEX
document can be quickly constructed. TT filters are
developed to check and correct user supplied content
for constructs that would cause the LATEX compiler
to fail. Filters are also used to sanitise Windows file
paths for use in LATEX.

Styling the document to look like a product cat-
alogue was achieved using sans serif fonts, flowfram
thumb tabs, colourful chapter and section headings
developed using tikz, long tables that allow page
breaks, alternating row colours, wrapping of para-
graph text around images and the highlighting of
new products. Full page PDFs are included in the
document for the covers, front matter and adverts.

The result is system to generate a product cata-
logue, quickly and easily directly from our database
using free and open source tools. This has reduced
the workload in producing a catalogue and increased
staff productivity and efficiency.

1 Introduction

I produce an 80 page full colour product catalogue
in LATEX. This paper outlines the tools I used to
implement the system, link it to our database and
style the catalogue for printing.

We print a new catalogue every six months and
it has approximately 1000 products, 16 full page
colour adverts and takes less than two minutes to
build from the command line.

2 Why did I write this?

I am part owner of a small wholesale distribution
business in Australia. When we established the busi-
ness in 2001, we had approximately 40 products in
our catalogue, for which a one page price list and
order form in Microsoft Excel sufficed.

As we grew the business and added more prod-
ucts to our portfolio, the catalogue became unwieldy

to produce in this way. So in 2004 I set out to create
a more robust system to produce it.

My goals were to create a system that would
produce a product catalogue automatically from our
database, wouldn’t require long and detailed proof
reading to ensure pricing was correct, be something I
could delegate to staff for catalogue production, and
that the staff need not have any special technical
knowledge to use the system.

2.1 Tools I looked at

First, InDesign:
• InDesign at the time had limited scripting ability.
This has improved now and you can write scripts
in Microsoft Visual Basic or JavaScript.

• no proper database connectivity at the time.
There are now numerous commercial tools that
allow you to link InDesign to a database.

• proprietary software (I prefer to use free tools if
possible).

Second, DocBook [1]:
• limited formatting and layout capabilities
• recommends using LATEX for advanced layouts
• no database connectivity
• plain text, easy to script using a template tool

Third, LATEX:
• flexible layout capabilities
• free and open source
• no database connectivity
• plain text, easy to script using a template tool

3 The challenge

3.1 How to script LATEX?

I could have written the system in native LATEX but
LATEX has no way to retrieve data from a database.
The other option was to choose a tool like PHP or
Template Toolkit (TT).

3.2 PHP

Pros: PHP is widely used.

Cons: geared towards HTML/web; it’s PHP; it’s
not Perl.

3.3 Template Toolkit

Pros:
• Generalised to templating anything
• not PHP
• written in Perl
• Template::Plugin::Latex can output PDF

directly; can build manually for demonstration.
Astute readers might notice a slight bias towards

Perl. This was mainly due to having prior knowl-

How to make a product catalogue that doesn’t look like a dissertation

http://www.docbook.org/docbook

264 TUGboat, Volume 34 (2013), No. 3

edge of Perl and meant I didn’t have to learn a new
programming language.

3.4 Database driven documents

Template Toolkit uses Perl’s DBI for database access,
which means it can retrieve data from just about
anything. Our data is stored in Microsoft SQL and
Microsoft Access. I use DBI Proxy [2] to connect to
the MS Access database.

3.5 Compiling reliably

Building the catalogue from source is a two step pro-
cess: running Template Toolkit, and then passing its
output through pdflatex. I created a Makefile to do
this, but often the document would require multiple
runs to ensure all the cross-references were correct. A
tool such as latexmk [3] or rubber [4] helps with this
by providing a single command that will repeatedly
run pdflatex until all cross-references are stable.

3.6 User interface for entering data
to the catalogue

I needed a user interface for data entry. I chose MS
Access as being easy to script, it was a familiar user
interface for the staff, and I already owned it. The
downside is that of course it is a proprietary tool.

4 Template Toolkit Primer

Here’s how I scripted LATEX using Template Toolkit.

4.1 Install Template Toolkit

Cpanminus [5] is a great tool to retrieve, unpack,
build and install Perl modules from CPAN:
cpanm Template
cpanm DBD::CSV
cpanm DBI
cpanm Template::Plugin::DBI

Now we have Template Toolkit, DBI, and some ancil-
lary modules installed, and can try writing a simple
Hello World.

4.2 Hello World

tpage is a simple script supplied by TT that parses
a template file supplied on the command line and
outputs it to standard output. Given this two-line
template file:
[% str = ’Hello TUG2013’ -%]
[% str %]

We can parse and output it like this:
$ tpage helloworld.tt
Hello TUG2013

Anything within [% %] will be treated as TT code
and executed. The minus sign before the closing

delimiter above strips the final newline from that line
upon output; similarly, a minus sign after an opening
delimiter (as below) removes a leading (preceding)
newline.

4.3 Read a CSV file

Let’s suppose we have this table of data:

Table 1: simple-example.csv
FirstName LastName FavouriteNumber

Jason Lewis 34
Joe Blogs 2
Frank Sinatra 88

Here is TT code to parse it, using DBI to access
the file as a database in the current directory:
[%- USE db = DBI(

database => "DBI:CSV:f_dir=.") -%]
[%- FOREACH item = db.query(

"SELECT * from simple-example.csv") -%]

FirstName: [% item.firstname %] \
LastName: [% item.lastname %] \
Favourite: [% item.favouritenumber %]
[% END %]

Note that the column headings of table 1 were sani-
tised to lower case by DBI::CSV.

4.4 Write your own parser

Well not quite, but Template Toolkit makes it easy
to implement a TT parser:
#!/usr/bin/env perl
use Template;
die "no TT filename given" if (@ARGV != 1);
my $tt = Template->new({

INCLUDE_PATH => ’.’,
INTERPOLATE => 1,

}) || die "$Template::ERROR\n";

my $input = $ARGV[0];

process input template, substituting variables:
$tt->process($input, $vars)

|| die $template->error();

This creates a TT object and parses the file whose
name is supplied on the command line. So far, this
just provides the same functionality as tpage.

4.5 Build your LATEX document

Here we write our LATEX document, including the
TT lines to read from the database.
[%- USE db = DBI(database =>

"DBI:CSV:f_dir=.") -%]
\documentclass{article}

Jason Lewis

http://search.cpan.org/dist/DBI/dbiproxy.PL
http://users.phys.psu.edu/~collins/software/latexmk-jcc/
https://launchpad.net/rubber/
http://search.cpan.org/dist/App-cpanminus/bin/cpanm

TUGboat, Volume 34 (2013), No. 3 265

\usepackage[utf8]{inputenc}

\title{build-document example}
\author{Jason Lewis}
\date{October 2013}

\begin{document}
[%- FOREACH item = db.query(

"SELECT * from simple-example.csv") -%]
First Name: [% item.firstname %]
\\ Last Name: [% item.lastname %]
\\ Favourite Number: [% item.favouritenumber %]
\\ \newline
[% END #FOREACH -%]
\end{document}

Output (where mytpage is the script we just saw):
$./mytpage build-document.tt
\documentclass{article}
\usepackage[utf8]{inputenc}

\title{build-document example}
\author{Jason Lewis}
\date{October 2013}

\begin{document}
First Name: Jason \\ Last Name: Lewis

\\ Favourite Number: 34 \\ \newline
First Name: Joe \\ Last Name: Blogs

\\ Favourite Number: 2 \\ \newline
First Name: Frank \\ Last Name: Sinatra

\\ Favourite Number: 88 \\ \newline
\end{document}

5 Technical problems

5.1 Escaping special LATEX characters

The text in our database is generated by users, and of-
ten cut and pasted from Microsoft Word. It typically
contains characters that won’t be natively typeset
by LATEX and worse still, cause the LATEX build to
hang or fail.

Therefore all text from the database needs to be
sanitised before being passed to LATEX. My solution
was to write a TT filter. Below is a sample function
that takes a string as its input, and ensures any dollar
signs within the string are escaped by prepending a
backslash.

5.2 Sanitise for LATEX
sub latex_filter {

my $return = $_[0];

escape $ with a backslash for LaTeX
$return =~ s/(\$)/\\$1/g;

return $return;
}

my $tt = Template->new({
FILTERS => {latex_filter => \&latex_filter},
INCLUDE_PATH => ’.’,
INTERPOLATE => 1,

}) || die "$Template::ERROR\n";

5.2.1 More things that need to be filtered

Then adding more filters is simply a matter of adding
a regular expression to search for it and replace it
with whatever is appropriate. Some examples.
Degree symbol:
$return =~ s/°/\\degree /g;

Accented characters: Transform é into \’{e}:
$return =~ s/é/\\’{e}/g;

Incorrect quotes: Convert beginning-of-line right
or double quotes to left quotes, and use ASCII apos-
trophes.
$return =~ s/(^|\s)’(.*?)/$1‘$2/g;
$return =~ s/(^|\s)"(.*?)/$1‘‘$2/g;
replace Windows quote (octal 0222) with ASCII ’
$return =~ s/\222/’/g;

En dash between numbers: Convert minus sign
to an en-dash by searching for single minus sign
between numbers and replacing it with two minus
signs: 1-10 vs. 1--10.
$return =~ s/(\d+)-(\d+)/$1--$2/g;

5.3 Pass through LATEX commands

From time to time I needed a way to pass LATEX
commands through the filter. I chose an escape of
<latex> which in hindsight may not have been the
best choice, as it looks too much like XML. We just
replace it with a backslash:
$return =~ s/<latex>/\\/g;

For example, <latex>latex becomes \latex.

5.4 Calling a filter from within a template

Once a filter has been defined, you can call it with
the pipe ‘|’ character.
[% str = "$100 is 50% of $200" -%]
Raw string is [% str %]
Filtered string is:

[% "$100 is 50% of $200" | latex_filter %]

Which results in:
Raw string is "$100 is 50% of $200"
Filtered string is:

"\$100 is 50\% of \$200"

5.4.1 LATEX does not like Windows paths

On our network, product images are stored on a
server drive accessed via a Windows share w:\. In
MS Access, users select an image to go with a product

How to make a product catalogue that doesn’t look like a dissertation

266 TUGboat, Volume 34 (2013), No. 3

range and the path to the image is stored in the
database as a Windows path:
w:\some\path to\an image.jpg

Users often use spaces, commas, apostrophes and
other abominable characters in the image paths,
and \includegraphics does not handle paths with
spaces in them.

The solution was to create a LATEX-friendly sym-
bolic link to the file and include that instead. This
was easy to achieve by making another TT filter.

5.4.2 Convert Windows path to Unix

The goal is to convert a Windows path such as
w:\Alive & Radiant\2013-July-product.jpg

to:
_mnt_Alive_&_Radiant_2013-July-product.jpg

5.4.3 Build a filter

Here is my Perl code:
convert all \ to / e.g. c:\ to c:/
$return =~ s/([\\])/\//g;
strip drive letter c:/path/file to path/file
$return =~ s/^\w:\///g;
strip extension: /filename.jpg to /filename
#$return =~ s/\.\w\w\w$//g;
clean up the path
$return = File::Spec::Unix->canonpath($return);

5.4.4 Make the symbolic link

Find spaces, / or % in filenames and replace with
underscores. Then use the resulting string as the
name for a symbolic link to the original file. Use the
symbolic link name in the LATEX document.
replace spaces, slashes, percents with _
$safe_filename =~ s/[\s\/%]/_/g;
make a symbolic link to the file
symlink($return, $safe_filename) || die;

5.4.5 Use new filter on image paths

Use the new filter on image paths as they are re-
trieved from the database:
[% ImagePath
= item.CategoryImagePath | path_filter %]

[% IF ImagePath != "" %]
\includegraphics[width=12cm,

height=\imageheight,
keepaspectratio=true]
{[%ImagePath%]}

[% END # if image exists %]

5.5 User interface

I needed to develop a user interface for staff to man-
age data in the catalogues. I chose MS Access as it
was easy to create and modify. I wanted to create

something that would shield the users from having
to know LATEX in order to create and edit content
for the catalogue.

6 Make LATEX output look like a
product catalogue

Clearly I had to style the document so it would
look more like a product catalogue and less like a
dissertation.

6.1 Sans serif fonts

The first thing I did was use a sans serif font. I chose
Helvetica.
\usepackage{helvet}
% set the font to helvetica for body text
\renewcommand{\familydefault}{\sfdefault}

This provides URW Nimbus Sans which is a free
clone [6] of Helvetica.

6.2 Thumb tabs

Thumb-tabs are a nice feature for any catalogue.
I created them using Nicola Talbot’s flowfram [7]
package, like this:
\setthumbtab{1}{backcolor=[rgb]{0.15,0.15,1}}
\setthumbtab{2}{backcolor=[rgb]{0.2,0.2,1}}
\makethumbtabs[50mm]{30mm}

\begin{document}
\tableofcontents
\thumbtabindex
\enablethumbtabs
\chapter{1ABC}
\Blindtext
\chapter{2ABC}
\Blindtext

\end{document}

6.3 Colourful chapter and section headings

Colourful chapter and section headings were made
using the tikz package.
\newcommand\colorchapter[1]

{\def\chapterbg{#1}\chapter}
% begin CHAPTER format
\newcommand\boxedchapter[1]{{%

\begin{tikzpicture}[inner sep=0pt,
inner ysep=1.3ex]

% left position of text
% right hand edge chapter title text

\node[anchor=base west]
at (3,0) (counter) {};

\path let \p1 = (counter.base east)
in node[anchor=base west,
text width={\textwidth-\x1+26.33em}] (content)
at ($(counter.base east)+(0.33em,0)$)
{\textcolor{white}
{\Huge\sffamily\textsc{\thechapter \ \ #1}}};

Jason Lewis

http://www.tug.dk/FontCatalogue/helvetica/
http://www.tug.dk/FontCatalogue/helvetica/
http://ctan.org/pkg/flowfram

TUGboat, Volume 34 (2013), No. 3 267

\begin{pgfonlayer}{background}
\shade[left color=\chapterbg,

right color=\chapterbg]
let \p1=(counter.north),\p2=(content.north)

in (0,100 + \maxof{\y1}{\y2})
rectangle (content.south east);

\end{pgfonlayer}
\end{tikzpicture}%
}}

\titleformat{@@html:\@@chapter}%
{}%
{}%
{0pt}%
{\boxedchapter}%
\titlespacing*{\chapter}{-100pt}{*-20}{*-1}

% end CHAPTER format

6.4 Long tables

I needed a way to create tables that could break
across page boundaries, but also be able to span
more than one page, and possibly have a PDF (for an
advert) embedded at a split. The xtab [8] package
produced the best results for me; however, there
are very many packages for tables. I found a good
summary of table package features at http://tex.
stackexchange.com/a/12673.

6.5 Alternating row colours in xtab

This was easy to do in TT: while looping through
query results, simply change the row colour every
two lines.
\begin{xtabular}[l]

[% i = 1 -%]
[% FOREACH item = db.query(

"select * from $CatInfo.query") %]
[%- IF (i mod 4 == 3)

|| (i mod 4 == 0) -%]
\rowcolor{[%-

item.SectionRow2BGColour -%]}
[% ELSE -%]

\rowcolor{[%-
item.SectionRow1BGColour -%]}

[%- END #iF -%]
[%- i = i+1 -%]
[% item.col1 %] &
[% item.col2 %] &
[% item.col3 %] \\ %row data

[% END; #FOREACH %]
\end{xtabular}

6.6 Wrap description around an image

I used wrapfig [9] to put text around an image.
[% IF ImagePath != "" %]

\begin{wrapfigure}{r}{0pt}

\includegraphics[width=12cm,\
height=\imageheight,\
keepaspectratio=true]\
{[%ImagePath%]}

\end{wrapfigure}
[% END # if image exists %]

6.7 Highlight new products

New products are highlighted by yellow text with a
red background.
[%- IF item.NewProduct -%]

\scriptsize\colorbox{red}
{\textcolor{yellow}{NEW}}
\sffamily\footnotesize{~ \
[%-item.description | latex_filter -%]} &

\footnotesize{[%-item.description |
latex_filter -%]} &

[%- END -%]

6.8 Including full page PDFs

We include full page PDFs in the catalogue for the
front matter, rear matter and adverts. All are sup-
plied as PDFs and we just have to include them.
The trick is to turn off scaling so the bleed and trim
marks appear in the correct place.
[% IF String.length > 0 %]

\includepdf[noautoscale=true]{[%CoverPage%]}
[% ELSE # warn that file cannot be found %]

Cover file [% CatInfo.CatalogueFrontPage %]
appears to be missing : [% error.info %]

[% END %]

7 Conclusion

I set out to create a tool for generating a catalogue
from our database. I was able to use free tools such
as LATEX and Template Toolkit to achieve this. The
overall goal was achieved, saving time and money
and allowing staff to be more productive.

References

[1] http://www.docbook.org/docbook
[2] http://search.cpan.org/dist/DBI/

dbiproxy.PL
[3] http://ctan.org/pkg/latexmk
[4] http://launchpad.net/rubber
[5] http://search.cpan.org/dist/App-cpanminus/

bin/cpanm
[6] http://www.tug.dk/FontCatalogue/helvetica
[7] http://ctan.org/pkg/flowfram
[8] http://ctan.org/pkg/xtab
[9] http://ctan.org/pkg/wrapfig

� Jason Lewis
http://organictrader.com.au

How to make a product catalogue that doesn’t look like a dissertation

http://mirror.ctan.org/macros/latex/contrib/xtab
http://tex.stackexchange.com/a/12673
http://tex.stackexchange.com/a/12673
http://ctan.org/pkg/wrapfig
http://www.docbook.org/docbook
http://search.cpan.org/dist/DBI/
http://ctan.org/pkg/latexmk
http://launchpad.net/rubber
http://search.cpan.org/dist/App-cpanminus/bin/cpanm
http://search.cpan.org/dist/App-cpanminus/bin/cpanm
http://www.tug.dk/FontCatalogue/helvetica
http://ctan.org/pkg/flowfram
http://ctan.org/pkg/xtab
http://ctan.org/pkg/wrapfig

	Introduction
	Why did I write this?
	The challenge
	Template Toolkit Primer
	Technical problems
	Make LaTeX output look like a product catalogue
	Conclusion

