
TUGboat, Volume 30 (2009), No. 2 247

LuaTEX: A user’s perspective

Aditya Mahajan

Abstract
In this article, I explain how to use Lua to write
macros in LuaTEX. I give some examples of macros
that are complicated in pdfTEX, but can be defined
easily using Lua in LuaTEX. These examples include
macros that do arithmetic on their arguments, use
loops, and parse their arguments.

1 Introduction
TEX is getting a new engine — LuaTEX. As its name
suggests, LuaTEX adds Lua, a programming lan-
guage, to TEX, the typesetter. I cannot overempha-
size the significance of being able to program TEX
in a high-level programming language. For exam-
ple, consider a TEX macro that divides two num-
bers. Such a macro is provided by the fp package
and also by pgfmath library of the TikZ package.
The following comment is from the fp package
\def\FP@div#1#2.#3.#4\relax#5.#6.#7\relax{%
% [...] algorithmic idea (for x>0, y>0)
% - %determine \FP@shift such that
% y*10^\FP@shift < 100000000
% <=y*10^(\FP@shift+1)
% - %determine \FP@shift' such that
% x*10^\FP@shift'< 100000000
% <=x*10^(\FP@shift+1)
% - x=x*\FP@shift'
% - y=y*\FP@shift
% - \FP@shift=\FP@shift-\FP@shift'
% - res=0
% - while y>0 %fixed-point representation!
% - \FP@times=0
% - while x>y
% - \FP@times=\FP@times+1
% - x=x-y
% - end
% - y=y/10
% - res=10*res+\FP@times/1000000000
% - end
% - %shift the result according to \FP@shift

The pgfmath library implements the macro in a sim-
ilar way, but limits the number of shifts that it does.
These macros highlight the state of affairs in writ-
ing TEX macros. Even simple things like multiplying
two numbers are hard; you either have to work ex-
tremely hard to circumvent the programming limi-
tations of TEX, or, more frequently, hope that some-
one else has done the hard work for you. In LuaTEX,
such a function can be written using the / operator
(I will explain the details later):
\def\DIVIDE#1#2{\directlua{tex.print(#1/#2)}}

Thus, with LuaTEX ordinary users can write
simple macros; and, perhaps more importantly, can
read and understand macros written by TEX wiz-
ards.

Since the LuaTEX project started it has been
actively supported by ConTEXt.1 These days, the
various “How do I write such a macro” questions
on the ConTEXt mailing list are answered by a so-
lution that uses Lua. I present a few such examples
in this article. I have deliberately avoided examples
about fonts and non-Latin languages. There is al-
ready quite a bit of documentation about them. In
this article, I want to highlight how to use LuaTEX
to write macros that require some “flow control”:
randomized outputs, loops, and parsing.

2 Interaction between TEX and Lua
To a first approximation, the interaction between
TEX and Lua is straightforward. When TEX (i.e.,
the LuaTEX engine) starts, it loads the input file
in memory and processes it token by token. When
TEX encounters \directlua, it stops reading the
file in memory, fully expands the argument of
\directlua, and passes the control to a Lua in-
stance. The Lua instance, which runs with a few
preloaded libraries, processes the expanded argu-
ments of \directlua. This Lua instance has a
special output stream which can be accessed using
tex.print(...). The function tex.print(...) is
just like the Lua function print(...) except that
tex.print(...) prints to a “TEX stream” rather
than to the standard output. When the Lua instance
finishes processing its input, it passes the contents
of the “TEX stream” back to TEX.2 TEX then inserts
the contents of the “TEX stream” at the current lo-
cation of the file that it was reading; expands the
contents of the “TEX stream”; and continues. If TEX
encounters another \directlua, the above process
is repeated.

As an exercise, imagine what happens when the
following input is processed by LuaTEX.3

\directlua%
{tex.print("Depth 1

\\directlua{tex.print('Depth 2')}")}

1 Not surprising, as two of LuaTEX’s main developers — Taco
Hoekwater and Hans Hagen — are also the main ConTEXt
developers.

2 The output of tex.print(...) is buffered and not passed
to TEX until the Lua instance has stopped.

3 In this example, I used two different kinds of quotations to
avoid escaping quotes. Escaping quotes inside \directlua
is tricky. The above was a contrived example; if you ever
need to escape quotes, you can use the \startluacode ...
\stopluacode syntax explained later.

248 TUGboat, Volume 30 (2009), No. 2

On top of these LuaTEX primitives, ConTEXt
provides a higher level interface. There are two ways
to call Lua from ConTEXt. The first is a macro
\ctxlua (read as ConTEXt Lua), which is similar
to \directlua. (Aside: It is possible to run the Lua
instance under different name spaces. \ctxlua is the
default name space; other name spaces are explained
later.) \ctxlua is good for calling small snippets of
Lua. The argument of \ctxlua is parsed under nor-
mal TEX catcodes (category codes), so the end of
line character has the same catcode as a space. This
can lead to surprises. For example, if you try to use
a Lua comment, everything after the comment gets
ignored.
\ctxlua
{-- A lua comment
tex.print("This is not printed")}

This can be avoided by using a TEX comment
instead of a Lua comment. However, working under
normal TEX catcodes poses a bigger problem: special
TEX characters like &, #, $, {, }, etc., need to be
escaped. For example, # has to be escaped with
\string to be used in \ctxlua.
\ctxlua
{local t = {1,2,3,4}
tex.print("length " .. \string#t)}

As the argument of \ctxlua is fully expanded, es-
caping characters can sometimes be tricky. To
circumvent this problem, ConTEXt defines a envi-
ronment called \startluacode ... \stopluacode.
This sets the catcodes to what one would expect in
Lua. Basically only \ has its usual TEX meaning,
the catcode of everything else is set to other. So, for
all practical purposes, we can forget about catcodes
in \startluacode ... \stopluacode. The above
two examples can be written as
\startluacode
-- A lua comment
tex.print("This is printed.")

local t = {1,2,3,4}
tex.print("length " .. #t)

\stopluacode
This environment is meant for moderately sized

code snippets. For longer Lua code, it is more con-
venient to write the code in a separate Lua file and
then load it using Lua’s dofile(...) function.

ConTEXt also provides a Lua function to con-
veniently write to the TEX stream. The func-
tion is called context(...) and it is equivalent to
tex.print(string.format(...)).

Using the above, it is easy to define TEX macros
that pass control to Lua, do some processing in Lua,
and then pass the result back to TEX. For example,

a macro to convert a decimal number to hexadeci-
mal can be written simply, by asking Lua to do the
conversion.
\def\TOHEX#1{\ctxlua{context("\%X",#1)}}
\TOHEX{35}
The percent sign had to be escaped because \ctxlua
assumes TEX catcodes. Sometimes, escaping ar-
guments can be difficult; instead, it can be easier
to define a Lua function inside \startluacode ...
\stopluacode and call it using \ctxlua. For exam-
ple, a macro that takes a comma separated list of
strings and prints a random item can be written as
\startluacode
userdata = userdata or {}
math.randomseed(os.time())
function userdata.random(...)
context(arg[math.random(1, #arg)])

end
\stopluacode

\def\CHOOSERANDOM#1%
{\ctxlua{userdata.random(#1)}}

\CHOOSERANDOM{"one", "two", "three"}
I could have written a wrapper so that the func-

tion takes a list of words and chooses a random word
among them. For an example of such a conversion,
see the “sorting a list of tokens” page on the LuaTEX
wiki [2].

In the above, I created a name space called
userdata and defined the function random in that
name space. Using a name space avoids clashes with
the Lua functions defined in LuaTEX and ConTEXt.

In order to avoid name clashes, ConTEXt also
defines independent name spaces of Lua instances.
They are

user : a private user instance
third : third party module instance

module : ConTEXt module instance
isolated : an isolated instance

Thus, for example, instead of \ctxlua and
\startluacode ... \stopluacode, the user in-
stance can be accessed via the macros \usercode
and \startusercode ... \stopusercode. In in-
stances other than isolated, all the Lua func-
tions defined by ConTEXt (but not the inbuilt Lua
functions) are stored in a global name space. In
the isolated instance, all Lua functions defined
by ConTEXt are hidden and cannot be accessed.
Using these instances, we could write the above
\CHOOSERANDOM macro as follows
\startusercode
math.randomseed(global.os.time())

TUGboat, Volume 30 (2009), No. 2 249

function random(...)
global.context(arg[math.random(1, #arg)])

end
\stopusercode

\def\CHOOSERANDOM#1%
{\usercode{random(#1)}}

Since I defined the function random in the user
instance of Lua, I did not bother to use a separate
name space for the function. The Lua functions
os.time, which is defined by a LuaTEX library, and
context, which is defined by ConTEXt, needed to
be accessed through a global name space. On the
other hand, the math.randomseed function, which
is part of Lua, could be accessed as is.

A separate Lua instance also makes debugging
slightly easier. With \ctxlua the error message
starts with
! LuaTeX error <main ctx instance>:
With \usercode the error message starts with
! LuaTeX error <private user instance>:
This makes it easier to narrow down the source of
error.

Normally, it is best to define your Lua func-
tions in the user name space. If you are writing a
module, then define your Lua functions in the third
instance and in a name space which is the name of
your module. In this article, I will simply use the
default Lua instance, but take care to define all my
Lua functions in a userdata name space.

Now that we have some idea of how to work
with LuaTEX, let’s look at some examples.

3 Arithmetic without using a abacus
Doing simple arithmetic in TEX can be extremely
difficult, as illustrated by the division macro in the
introduction. With Lua, simple arithmetic becomes
trivial. For example, if you want a macro to find the
cosine of an angle (in degrees), you can write
\def\COSINE#1%
{\ctxlua(context(math.cos(#1*2*pi/360))}

The built-in math.cos function assumes that
the argument is specified in radians, so we convert
from degrees to radians on the fly. If you want to
type the value of π in an article, you can simply say
$\pi = \ctxlua{context(math.pi)}$
or if you want less precision (notice the percent sign
is escaped)
$\pi = \ctxlua{context("\%.6f", math.pi)}$

4 Loops without worrying about expansion
Loops in TEX are tricky because macro assignments

and macro expansion interact in strange ways. For
example, suppose we want to typeset a table showing
the sum of the roll of two dice and want the output
to look like this

(+) 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

The tedious (but faster!) way to achieve this is to
simply type the whole table by hand. For example,
\bTABLE
\bTR \bTD $(+)$ \eTD \bTD 1 \eTD \eTR
\bTR \bTD 1 \eTD \bTD 2 \eTD \eTR
...
...

\eTABLE
It is however natural to want to write this table

as a loop, and compute the values. A first ConTEXt
implementation using the recursion level might be:
\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\bTD \recurselevel \eTD}

\eTR
\dorecurse{6}
{\bTR

\bTD \recurselevel \eTD
\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}
{\bTD
\the\numexpr\firstrecurselevel+\recurselevel

\eTD}%
\eTR}

\eTABLE
However, this does not work as expected, yielding all
zeros. A natural table stores the contents of all the
cells, before typesetting it. But it does not expand
the contents of its cell before storing them. So, at the
time the table is actually typeset, TEX has already
finished the \dorecurse and \recurselevel is set
to 0.

The solution is to place \expandafter at the
correct location(s) to coax TEX into expanding

250 TUGboat, Volume 30 (2009), No. 2

the \recurselevel macro before the natural table
stores the cell contents. The difficult part is figuring
out the exact location of \expandafters. Here is a
solution that works:
\bTABLE
\bTR
\bTD $(+)$ \eTD
\dorecurse{6}
{\expandafter \bTD \recurselevel \eTD}

\eTR
\dorecurse{6}
{\bTR
\edef\firstrecurselevel{\recurselevel}
\expandafter\bTD \recurselevel \eTD
\dorecurse{6}
{\expandafter\bTD
\the\numexpr\firstrecurselevel+\recurselevel
\relax
\eTD}
\eTR}

\eTABLE
We only needed to add three \expandafters to

make the naive loop work. Nevertheless, finding the
right location pf \expandafter can be frustrating,
especially for a non-expert.

By contrast, in LuaTEX writing loops is easy.
Once a Lua instance starts, TEX does not see any-
thing until the Lua instance exits. So, we can write
the loop in Lua, and simply print the values that
we would have typed to the TEX stream. When the
control is passed to TEX, TEX sees the input as if we
had typed it by hand. Consequently, macro expan-
sion is no longer an issue. For example, we can get
the above table by:
\startluacode
context.bTABLE()
context.bTR()
context.bTD() context("$(+)$") context.eTD()
for j=1,6 do
context.bTD() context(j) context.eTD()

end
context.eTR()
for i=1,6 do
context.bTR()
context.bTD() context(i) context.eTD()
for j=1,6 do
context.bTD() context(i+j) context.eTD()

end
context.eTR()

end
context.eTABLE()
\stopluacode

The Lua functions such as context.bTABLE()
and context.bTR() are just abbreviations for run-
ning context ("\\bTABLE"), context("\\bTR"),
etc. See the ConTEXt Lua document manual for

more details about such functions [3]. The rest of
the code is a simple nested for-loop that computes
the sum of two dice. We do not need to worry about
macro expansion at all!

5 Parsing input without exploding
your head

In order to get around the weird rules of macro ex-
pansion, writing a parser in TEX involves a lot of
macro jugglery and catcode trickery. It is a black
art, one of the biggest mysteries of TEX for ordinary
users.

As an example, let’s consider typesetting
chemical molecules in TEX. Normally, molecules
should be typeset in text mode rather than math
mode. For example, H2SO–

4, can be input as
H\low{2}SO\lohi{4}{--}. Typing so much markup
can be cumbersome. Ideally, we want a macro such
that we type \molecule{H_2SO_4^-} and the macro
translates this into H\low{2}SO\lohi{4}{--}. Such
a macro can be written in TEX as follows.
\newbox\chemlowbox
\def\chemlow#1%
{\setbox\chemlowbox

\hbox{{\switchtobodyfont[small]#1}}}

\def\chemhigh#1%
{\ifvoid\chemlowbox

\high{{\switchtobodyfont[small]#1}}%
\else

\lohi{\box\chemlowbox}
{{\switchtobodyfont[small]#1}}

\fi}

\def\finishchem%
{\ifvoid\chemlowbox\else

\low{\box\chemlowbox}
\fi}

\unexpanded\def\molecule%
{\bgroup
\catcode`_=\active \uccode`\~=`_

\uppercase{\let~\chemlow}%
\catcode`\^=\active \uccode`\~=`\^

\uppercase{\let~\chemhigh}%
\dostepwiserecurse {65}{90}{1}
{\catcode \recurselevel = \active
\uccode`\~=\recurselevel

\uppercase{\edef~{\noexpand\finishchem
\rawcharacter{\recurselevel}}}}%
\catcode`\-=\active \uccode`\~=`\-

\uppercase{\def~{--}}%
\domolecule }%

\def\domolecule#1{#1\finishchem\egroup}
This monstrosity is a typical TEX parser. Ap-

TUGboat, Volume 30 (2009), No. 2 251

propriate characters need to be made active; occa-
sionally, \lccode and \uccode need to be set; sig-
naling tricks are needed (for instance, checking if
\chemlowbox is void); and then magic happens (or
so it seems to a flabbergasted user). More sophisti-
cated parsers involve creating finite state automata,
which look even more monstrous.

With LuaTEX, things are different. LuaTEX in-
cludes a general parser based on PEG (parsing ex-
pression grammar) called lpeg [4]. This makes writ-
ing parsers in TEX much more comprehensible. For
example, the above \molecule macro can be written
as
\startluacode
userdata = userdata or {}

local lowercase = lpeg.R("az")
local uppercase = lpeg.R("AZ")
local backslash = lpeg.P("\\")
local csname = backslash * lpeg.P(1)

* (1-backslash)^0
local plus = lpeg.P("+") / "\\textplus "
local minus = lpeg.P("-") / "\\textminus "
local digit = lpeg.R("09")
local sign = plus + minus
local cardinal = digit^1
local integer = sign^0 * cardinal
local leftbrace = lpeg.P("{")
local rightbrace = lpeg.P("}")
local nobrace = 1 - (leftbrace + rightbrace)
local nested = lpeg.P {leftbrace

* (csname + sign + nobrace
+ lpeg.V(1))^0 * rightbrace}

local any = lpeg.P(1)

local subscript = lpeg.P("_")
local superscript = lpeg.P("^")
local somescript = subscript + superscript

local content = lpeg.Cs(csname + nested
+ sign + any)

local lowhigh = lpeg.Cc("\\lohi{%s}{%s}")
* subscript * content
* superscript * content
/ string.format

local highlow = lpeg.Cc("\\hilo{%s}{%s}")
* superscript * content
* subscript * content
/ string.format

local low = lpeg.Cc("\\low{%s}")
* subscript * content
/ string.format

local high = lpeg.Cc("\\high{%s}")
* superscript * content
/ string.format

local justtext = (1 - somescript)^1
local parser = lpeg.Cs((csname + lowhigh

+ highlow + low
+ high + sign + any)^0)

userdata.moleculeparser = parser

function userdata.molecule(str)
return parser:match(str)

end
\stopluacode

\def\molecule#1%
{\ctxlua{userdata.molecule("#1")}}

This is more verbose than the TEX solution, but
is easier to read and write. With a proper parser, I
do not have to use tricks to check if either one or both
_ and ^ are present. More importantly, anyone (once
they know the Lpeg syntax) can read the parser and
easily understand what it does. This is in contrast
to the implementation based on TEX macro jugglery
which require you to implement a TEX interpreter in
your head to understand.

6 Conclusion
LuaTEX is removing many TEX barriers: using sys-
tem fonts, reading and writing Unicode files, type-
setting non-Latin languages, among others. How-
ever, the biggest feature of LuaTEX is the ability to
use a high-level programming language to program
TEX. This can potentially lower the learning curve
for programming TEX.

In this article, I have mentioned only one as-
pect of programming TEX: macros that manipulate
their input and output some text to the main TEX
stream. Many other kinds of manipulations are pos-
sible: LuaTEX provides access to TEX boxes, token
lists, dimensions, glues, catcodes, direction parame-
ters, math parameters, etc. The details can be found
in the LuaTEX manual [1].

7 References

[1] LuaTEX reference manual,
http://www.luatex.org/documentation.html

[2] Sorting a list of tokens, in the Joy of LuaTEX.
http://luatex.bluwiki.com/go/
Sort_a_token_list

[3] Hans Hagen, “CLD: ConTEXt Lua document”,
http://www.pragma-ade.com/general/
manuals/cld-mkiv.pdf

[4] Lpeg: Parsing Expression Grammars for Lua,
http://www.inf.puc-rio.br/˜roberto/lpeg/
lpeg.html

⋄�Aditya Mahajan
adityam (at) umich dot edu

