
TUGboat, Volume 30 (2009), No. 2 243

Integrating Unicode and OpenType math
in ConTEXt

Aditya Mahajan

Abstract
In this article, I briefly explain the approach taken
by ConTEXt to integrate Unicode math with Open-
Type fonts.

1 A bit of history
Since around 2000, ConTEXt has supported Uni-
code math input. Under the utf-8 input regime
(obtained with \enableregime[utf-8]), you could
type $αβγ$ to get the Greek letters αβγ. This was
achieved by lot of macro jugglery; similar to the kind
of macro jugglery needed for accents to work with-
out having to type in the arcane plain TEX accent
macros. Basically, the input regime ensured that in-
side math mode α got mapped to \alpha, and the
rest was taken care of by the usual font mappings
that mapped \alpha to the correct glyph in the cor-
rect font. However, these mappings were not clean.
If you defined a macro, say \MACRO, that took one
argument, then \MACRO α would not work; you had
to type \MACRO{α}. This small detail of grouping
UTF-8 input was a constant reminder that things
were not so clean underneath.

LuaTEX was designed to handle input encoding
cleanly. The engine only understands UTF-8 encod-
ing and provides enough hooks to implement other
encodings. ConTEXt MkIV assumes that the input
is either UTF-8 or UTF-16. The input can then be
directly mapped to the correct glyph locations in
TrueType and OpenType fonts. However, handling
of math input was much trickier, mainly because of
the effort needed to support OpenType math. So,
for some time, the handling of math fonts did not
change: in math mode α was mapped to \alpha and
traditional TEX font mapping ensured that \alpha
was mapped to the correct glyph in the correct font.

Around the beginning of this year, ConTEXt
MkIV completely moved to Unicode math. Thus,
0x1D6FC (math italic small alpha) was mapped to
the same position in an OpenType math font. If
you type this Unicode character in math mode, the
output is α. For convenience, typing 0x03B1 (Greek
small letter alpha) in math mode gets mapped to
0x1D6FC; as does the macro \alpha. All this is trans-
parent to the user, except when he accidentally types
$\MACRO α$ and is pleasantly surprised not to get a
nasty error message.

There are two steps involved in the integra-
tion of Unicode input with OpenType math fonts:

(i) map the input characters or macros to the correct
Unicode character; (ii) map the Unicode character to
the correct OpenType glyph at the correct size and
with the correct kerning. The bulk of these mappings
are done by five files: char-def.lua, math-ini.lua,
math-map.lua, math-noa.lua and math-vfu.lua.
Below I explain briefly what these files do. Please
take everything in this article with a pinch of salt. I
do not understand how OpenType math fonts work,
so specific details may be wrong. The main idea of
this article is to convey the gist of how things are
done in ConTEXt, and where to search if you want
to know specific details.

2 char-def.lua
Mapping UTF-8 input chapters to Unicode charac-
ters is straightforward — the byte sequence of the in-
put character is the same as the Unicode slot. Thus,
input byte sequence 0x1D6FC is the Unicode char-
acter 0x1D6FC. However, mapping macros to Uni-
code byte sequences is different. We need to explic-
itly tell ConTEXt that \alpha corresponds to the
Unicode character 0x1D6FC. Furthermore, just get-
ting the correct glyph is not sufficient for typesetting
mathematics. We also need to know the math class
of the glyph, so that TEX can correctly position the
characters.

All this information is stored as a Lua table in
char-def.lua. This is a huge file, initially gener-
ated from Unicode tables and later updated man-
ually from data present in ConTEXt files and else-
where (it is still not complete). For example, the
entry for 0x1D6FC is:
[0x1D6FC]={
category="ll",
description="MATHEMATICAL ITALIC SMALL ALPHA",
direction="l",
linebreak="al",
mathclass="default",
mathname="alpha",
specials={ "font", 0x03B1 },
unicodeslot=0x1D6FC,

},

Amongst other things, this tells ConTEXt that
the macro \alpha (indicated by mathname="alpha")
corresponds to this Unicode slot. It also tells that the
math class of this character is default. Similar de-
tails are provided for a large fraction of the Unicode
characters.

Some Unicode characters correspond to more
than one macro (with different math classes). One
such example is 0x007C, which corresponds to
\arrowvert, \vert, \lvert, \rvert, and \mid,
each belonging to a different math class. This Uni-

244 TUGboat, Volume 30 (2009), No. 2

code character is represented as:
{
adobename="bar",
category="sm",
cjkwd="na",
contextname="textbar",
description="VERTICAL LINE",
direction="on",
linebreak="ba",
mathspec={
{ class="nothing", name="arrowvert" },
{ class="delimiter", name="vert" },
{ class="open", name="lvert" },
{ class="close", name="rvert" },
{ class="relation", name="mid" },

},
unicodeslot=0x007C,
},

The different macros and their corresponding
math classes are encoded as part of a mathspec key.
When the character | (0x007C) is typed the math
class is set to the class of the first element of the
mathspec table (nothing in this case).

3 math-ini.lua
All the information in the Lua table in char-def
.lua by itself is useless. We need to tell ConTEXt
how to use it. For the math mappings, this is done
in math-ini.lua.

This file begins by defining names for the differ-
ent math classes:
local classes = {

ord = 0, -- mathordcomm
op = 1, -- mathopcomm
bin = 2, -- mathbincomm
rel = 3, -- mathrelcomm
open = 4, -- mathopencomm
close = 5, -- mathclosecomm
punct = 6, -- mathpunctcomm
alpha = 7, -- mathalphacomm
accent = 8, -- class 0
radical = 9,
xaccent = 10, -- class 3
topaccent = 11, -- class 0
botaccent = 12, -- class 0
under = 13,
over = 14,
delimiter = 15,
inner = 0, -- mathinnercomm
nothing = 0, -- mathnothingcomm
choice = 0, -- mathchoicecomm
box = 0, -- mathboxcomm
limop = 1, -- mathlimopcomm
nolop = 1, -- mathnolopcomm

}

For each math class, this file has functions to
return the LuaTEX code to define the corresponding

math characters. A few examples of such functions:
local function delcode(target,family,slot)

return format('\\Udelcode%s="%X "%X ',
target,family,slot)

end
local function mathchar(class,family,slot)

return format('\\Umathchar "%X "%X "%X ',
class,family,slot)

end
local function mathaccent(class,family,slot)

return format('\\Umathaccent "%X "%X "%X ',
0,family,slot)

end

Similar functions are there for defining math sym-
bols, for example:
function setmathsymbol(name,class,family,slot)
if class == classes.accent then
texsprint(

format("\\unexpanded\\xdef\\%s{%s}",
name,
mathaccent(class,family,slot)))

elseif class == classes.topaccent then
texsprint(

format("\\unexpanded\\xdef\\%s{%s}",
name,
mathtopaccent(class,family,slot)))

elseif class == classes.botaccent then
texsprint(

format("\\unexpanded\\xdef\\%s{%s}",
name,
mathbotaccent(class,family,slot)))

...
end

math-ini.lua then defines a Lua function
named mathematics.define that goes through all
the elements in the table in char-def.lua and maps
them to the correct LuaTEX command.

These mappings are all that is needed to work
with OpenType math fonts like Cambria and Asana
Math. ConTEXt has predefined typescripts for Cam-
bria; so, to use Cambria you can just type
\usetypescript[cambria]
\setupbodyfont[cambria]

There are no predefined typescripts for Asana
Math, but defining one on our own is not too hard.
First, we need to define a math typescript:
\starttypescript [math] [asana] [name]
\definefontsynonym
[MathRoman]
[name:Asana-Math]
[features=math\mathsizesuffix]

\stoptypescript

The features=math\mathsizesuffix option acti-
vates the OpenType math features. The rest of the
typescript can be defined in the usual manner.

TUGboat, Volume 30 (2009), No. 2 245

\starttypescript [asana]
\definetypeface [asana] [rm] [serif]

[palatino] [default]
\definetypeface [asana] [ss] [sans]

[modern] [default] [rscale=1.075]
\definetypeface [asana] [tt] [mono]

[modern] [default] [rscale=1.075]
\definetypeface [asana] [mm] [math]

[asana] [default]
\quittypescriptscanning

\stoptypescript

To use this typescript, we need to type
\usetypescript[asana]
\setupbodyfont[asana]

4 math-map.lua and math-noa.lua
So far, we have mapped Unicode input and macros
to OpenType math fonts. However, when using TEX
one expects traditional TEX input to work. Thus,
a should typeset math italic a. No one is likely
to type 0x1D44E, even if Unicode suggests that. The
same is true for bold fonts. One expects ${\bfa}$ to
give bold a, even if Unicode suggests that we should
have typed 0x1D41A.

To accommodate this, in math mode ConTEXt
maps upper and lower case letters A-Z, a-z, digits
0-9, and upper and lower case Greek letters α-ω,
A-Ω to the corresponding ranges in Unicode math,
depending on the current font style. These mappings
are defined in math-map.lua file.

The mappings are defined using a Lua table,
which looks like this.
mathematics.alphabets = {

regular = {
tf = { ... },
it = { ... },
bi = { ... },
bf = { ... },

},
sansserif = {

tf = { ... },
it = { ... },
bi = { ... },
bf = { ... },

},
monospaced = {

tf = { ... },
},
blackboard = {

tf = { ... },
},
fraktur = {

tf = { ... },
bf = { ... },

},
script = {

tf = { ... },

bf = { ... },
}

}

Each of these subtables maps input letters to
their corresponding Unicode characters. These sub-
tables look as follows.
regular = {

...
it = {
ucletters = 0x1D434,
lcletters = { -- H
[0x00061]=0x1D44E, [0x00062]=0x1D44F,
[0x00063]=0x1D450, [0x00064]=0x1D451,
[0x00065]=0x1D452, [0x00066]=0x1D453,
[0x00067]=0x1D454, [0x00068]=0x0210E,
... },

symbols = {
[0x0391]=0x1D6E2, [0x0392]=0x1D6E3,
[0x0393]=0x1D6E4, [0x0394]=0x1D6E5,
[0x0395]=0x1D6E6, [0x0396]=0x1D6E7,
... },

},
},

The line ucletters = 0x1D434 tells ConTEXt
to map upper case letters to Unicode characters
starting from 0x1D434. The line lcletters =
{...} tells ConTEXt to map 0x00061 to 0x1D44E,
0x00062 to 0x1D44F, as so on. For lower case letters,
simply specifying lcletters = 0x1D44E would not
work because Unicode mathematical italic small let-
ters are not in contiguous slots. For example, the
slot 0x1D455 (which corresponds to lower case h) is
empty; lower case h should map to slot 0x0210E.

Other subtables are filled in a similar manner.
math-map.lua also defines Lua functions that

use these tables to remap characters on the fly. The
actual transformation takes place in math-noa.lua
which goes through the math noad list and carries
out the actual transformations according to the map-
pings in math-map.lua.

5 math-vfu.lua
Using the above infrastructure, it is easy to use
OpenType math fonts in ConTEXt. Unfortu-
nately, at present there are only two Unicode math
fonts — Cambria and Asana Math. OpenType math
version of TEX Gyre math fonts are planned, but
until they are developed, we need a way to use tradi-
tional TEX fonts in ConTEXt MkIV. ConTEXt creates
virtual OpenType math fonts to use traditional TEX
fonts. The mappings for creating the virtual font are
in math-vfu.lua. Once a virtual OpenType math
font is created, the above infrastructure can be used
to access the font.

First, math-vfu.lua defines many encoding

246 TUGboat, Volume 30 (2009), No. 2

vectors that map Unicode characters to glyph lo-
cations of the font. One such encoding vector is
fonts.enc.math["tex-mi"] = {

[0x1D6E4] = 0x00, -- Gamma
[0x1D6E5] = 0x01, -- Delta
[0x1D6E9] = 0x02, -- Theta
[0x1D6F3] = 0x02, -- varTheta (not in TeX)
[0x1D6EC] = 0x03, -- Lambda
[0x1D6EF] = 0x04, -- Xi
[0x1D6F1] = 0x05, -- Pi
[0x1D6F4] = 0x06, -- Sigma
...

}

This tells that Unicode character 0x1D6E4 should be
mapped to the font glyph 0x00 and so on. A virtual
font that associates such encoding vectors with tra-
ditional TEX fonts is created using
mathematics.make_font ("lmroman10-math", {
{ name="lmroman10-regular.otf",
features="virtualmath", main=true },

{ name="lmmi10.tfm", vector="tex-mi",
skewchar=0x7F },

{ name="lmsy10.tfm", vector="tex-sy",
skewchar=0x30, parameters=true },

{ name="lmex10.tfm", vector="tex-ex",
extension=true },

{ name="msam10.tfm", vector="tex-ma" },
{ name="msbm10.tfm", vector="tex-mb" },
{ name="lmroman10-bold.otf", "tex-bf" } ,
{ name="lmmib10.tfm", vector="tex-bi",
skewchar=0x7F },

{ name="lmsans10-regular.otf",
vector="tex-ss", optional=true },

{ name="lmmono10-regular.otf",
vector="tex-tt", optional=true },

{ name="eufm10.tfm", vector="tex-fraktur",
optional=true },

{ name="eufb10.tfm",
vector="tex-fraktur-bold", optional=true },

})

This creates a virtual font lmroman10-math which
takes bits and pieces from various fonts. This virtual
font can be used as follows.
\starttypescript [math] [modern]
...
\definefontsynonym
[LMMathRoman10-Regular]
[LMMath10-Regular@lmroman10-math]

...
\stoptypescript

The @lmroman-math in the name uses the above vir-
tual font. The LMMathRoman10-Regular font can be
used to complete the math typescript in the usual
manner.

ConTEXt provides virtual OpenType math fonts
for Latin Modern, Times (txfonts and MathTime),
Palatino (pxfonts), Iwona, Lucida, and MathDesign
(Charter, Garamond, and Utopia) fonts.

6 Conclusion
ConTEXt now supports OpenType math fonts. In
fact, even support for traditional TEX fonts now in-
volves creating a virtual OpenType math font. Thus,
as far as ConTEXt MkIV is concerned, OpenType
math fonts are the future. However, the current im-
plementation is still evolving, so some of the imple-
mentation details described in this paper will likely
change with time.

� Aditya Mahajan
adityam (at) umich dot edu

