
CrossTEX: A modern bibliography management tool

Robert Burgess and Emin Gün Sirer
Cornell University, Ithaca, NY
http://www.cs.cornell.edu/People/egs/crosstex

Abstract

CrossTEX is a new bibliography management tool that eases database mainte-
nance, style customization, and citation. It is based on an object-oriented data
model that minimizes redundant information in bibliographic databases. It en-
ables a work to be cited not only through arbitrarily-assigned object keys but
through semantic information that uniquely identifies the work. It automates
common tasks in order to avoid human errors and inconsistencies in bibliogra-
phies, while providing users with fine-grained control. CrossTEX’s other features
include support for modern reference objects such as URLs and patents, direct
generation of HTML documents, the ability to write styles in a modern program-
ming language, and extensive databases of published works included in the distri-
bution. It is backwards-compatible with existing BibTEX databases, and, overall,
builds on BibTEX’s strengths while fundamentally fixing the design restrictions
that lead to errors in BibTEX-formatted documents.

1 Introduction

Bibliography management and typesetting play a
critical role in publishing. Since its introduction in
1985, BibTEX has become the dominant tool for pro-
fessional bibliography management with LATEX. It
has achieved this dominance due to several good de-
sign decisions, such as tight integration with LATEX,
a human-readable format for bibliographic data-
bases, and overall ease of use. However, two decades
of experience with BibTEX have revealed several
fundamental weaknesses that require re-evaluating
what features a modern bibliography management
system must provide. CrossTEX is such a tool, which
learns from the example of BibTEX and provides
backwards compatibility while moving forward with
new models of bibliographic data and stylistic con-
trol.

1.1 What’s wrong with BIBTEX?

First, BibTEX interprets databases with a single-
table relational model in which every bibliographic
entry contains all of the information that can ap-
pear in it. This redundancy is a challenge to those
who maintain bibliographic databases because they
must correctly look up, enter, and maintain all that
information for every reference; it is easy to enter
or modify entries separately and use slightly differ-
ent versions of the name of a journal, conference, or
even author.

BibTEX’s crossref field provides a simple, spe-

cialized form of “inheritance”, allowing information
to be factored out into a single other object, but
is not a generalized feature — it is insufficient, for
example, for an author who wants to create a bibli-
ography of all of his or her own works, with a com-
mon note or URL associate with each entry. Al-
though @string objects could help prevent spelling
mistakes, there is no practical way around adding
the fields explicitly to each entry.

Furthermore, meeting publication requirements
in a professional setting that requires consistent ab-
breviations, names, and formatting guidelines re-
quires users to edit the database. To abbreviate
a journal name, the user must edit a copy of the
database, find each occurrence of the name, and
change it to the desired value. Even if the data-
base takes advantage of @string objects, a feature
included in BibTEX to attempt to circumvent the
restrictive relational model, the values of the strings
must be changed, because information appears in a
BibTEX-formatted bibliography as it appears in the
database. This fact alone prevents large, common
databases from being useful save for looking up cita-
tion information to copy-and-paste to smaller, per-
document bibliographies that authors must manage.

BibTEX citations within documents are based
on arbitrary keys attached to each entry in the data-
base. In the best case, authors establish site-wide
rules for creating keys from entries so they can cor-
rectly guess the required key based on the publica-
tion information of the article to be cited. This is

342 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

still quite fragile, as a single typo may cause the
wrong work to be cited; when databases have been
assembled by cutting and pasting entries from dif-
ferent sources, the keys are unlikely to follow a con-
vention, and the author must instead look up the
appropriate key for each citation.

BibTEX style files are written in their own, ar-
cane programming language. Few authors or data-
base maintainers have the skill to create or accu-
rately modify a bibliography style to meet require-
ments handed to them by publishers — they must
count on an appropriate style file being provided or
already existing, or they must blindly change one
that is “close” until it seems to produce the correct
typeset appearance.

In addition, BibTEX does not easily permit the
introduction of new kinds of objects. Database
maintainers represent newly emerging referenced
works, such as URLs, and unsupported objects, such
as patents, with the all-purpose @misc object whose
appearance is difficult to control because it is too
general.

Finally, BibTEX provides very little automation
besides formatting the references as specified in the
database. For example, it does not check capitaliza-
tion in titles, ensure that an author’s name appears
consistently, or abbreviate journals. This can lead
to inconsistent spelling, capitalization, or accents for
authors’ names or titles of papers. A modern tool
should be able to automate the tasks of checking and
fixing these common errors by enforcing consistency
by default.

1.2 A modern bibliography tool

We have developed a new bibliographic manage-
ment tool, CrossTEX, that addresses these problems.
It unifies features from modern programming lan-
guages, databases, and bibliography management
tools to solve problems authors and database main-
tainers have struggled with for two decades, and
also adds convenient new features while being com-
pletely backwards-compatible to allow authors to
use old BibTEX databases unmodified.

Authors and maintainers have very different
needs from a tool such as CrossTEX. Authors must
conform to a variety of requirements on appearance,
fields, and formatting, and so must have great flexi-
bility with their bibliographic data. Database main-
tainers, on the other hand, should be able to spec-
ify everything just once, so they need look up and
correctly enter conference locations, author names,
and book editors just once, and can find them in
one place to update and verify. Separating their
jobs is also very important. Authors should need

to do very little searching through the database for
keys, because their concern is writing. Maintainers
should be able to manage databases without concern
for document styles, because independence from in-
dividual documents allows databases to be shared
widely.

CrossTEX is designed not only to enable, but to
encourage large, common databases so that authors
can get on with their writing while the maintain-
ers have clean databases to manage. As a start, it
comes distributed with many large databases of the
papers published at major computer science confer-
ences, converted from the DBLP [13] project.

The most important aspect of CrossTEX is that
an object-oriented model replaces the underlying re-
lational model of BibTEX. Every entry is an object,
which contains fields and ultimately has a value it-
self; in BibTEX, entries have fields, and @string
objects have values, but this notion is not taken to
the level of principle. One object can use the value
of another by assigning its key to a field, by exten-
sion of the syntax for using @strings in BibTEX. In
addition, if the containing object leaves any fields
unspecified, it will inherit them, if possible, from
the other objects it refers to. For example, an ob-
ject representing a conference could specify not only
a value corresponding to the name of the conference,
but include fields such as editor or location. Any ar-
ticles that appear in the conference will simply use
that value as a book title and then automatically in-
herit an editor and location without specifying any-
thing extra. Those very familiar with BibTEX will
note that this is similar to the behavior of the spe-
cial ‘crossref’ field, but has become a part of the way
data is interpreted across the board rather than a
special-purpose feature.

The object-oriented model enables CrossTEX
databases to be concise and easily customized. For
instance, most authors refer to conferences by their
full names in formal journal papers, but abbreviate
them otherwise; in CrossTEX, objects are flexible
and have both long and short values. For exam-
ple, “OSDI” and “Symposium on Operating System
Design and Implementation” are two very different
strings, but they are both names for the same con-
ference. In BibTEX, the database maintainer would
have to choose just one value — but in CrossTEX,
both can appear in the same @conference object,
and the choice can wait until the author chooses
stylistic options for each document.

Objects can also specify fields conditionally.
Some information depends on context, especially
for often-reused objects such as conferences and au-
thors. If the location of a conference changes every

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 343

Robert Burgess and Emin Gün Sirer

year, it can be specified one way for 2006, and an-
other for 2007. Conditional fields are inherited along
with their conditions, allowing richly specified ob-
jects to adapt to the contexts where they are used.
This enables powerful new idioms such as the ability
to express everything about a conference over time
in a single object.

CrossTEX supports new kinds of objects, in-
cluding @url, @patent, and @rfc, that help mod-
ernize databases and allow them to be more precise,
rather than depending on overly permissive, non-
specific @misc objects. Adding other entirely new
objects is easy as well. Due to the more precise
taxonomy authors can apply stylistic options with
better granularity because each kind of object rep-
resents one specific kind of reference.

CrossTEX provides fine-grained control over ev-
ery aspect of the bibliography’s presentation. From
choosing between short and long conference names,
states or journals to abbreviating author names,
capitalizing titles or even pulling out hyperlinks in
fields, the author has control with command-line
switches. The LATEX files need not change at all
and there is no need to write new style files for each
combination of options.

CrossTEX provides new ways to keep track of
citation keys to make them more meaningful and
easier to find and remember. Objects are not re-
stricted to just one key, but can be assigned any
number of shorter or more descriptive keys, and
even extended with new aliases after their defini-
tion. An even more powerful technique inspired by
the NbibTeX [15] project is constrained citation: An
author can cite a paper by Sirer and Walsh in 2006
as \cite{!sirer-walsh:2006} without worrying at
all about what its key is in the database.

In addition to making consistency of data easy
through object inheritance, CrossTEX automatically
enforces consistency in other ways to avoid common
errors in databases, such as inconsistent capitaliza-
tion in titles. By default, it processes each title and
re-capitalizes them to a consistent style that can be
controlled by the author. CrossTEX carefully han-
dles accents in author names, math in titles, and
other complications to maintain consistency and a
professional appearance even if the database is not
perfect.

Maintainers will find many small but potent
features for managing large databases, such as the
ability to piece together many files with @include
statements or specify the same field for groups of ob-
jects with @default. CrossTEX also allows objects
to be updated far from their original definition, to
permit anyone to correct and extend shared data-

bases entirely without copying and pasting, even if
they do not have permission to change the database
itself.

CrossTEX is structured as a drop-in replace-
ment for BibTEX. Simply replace invocations of
bibtex in the typesetting process with crosstex,
and then incrementally update your databases to al-
low more and more consistency and reusability over
time using CrossTEX’s new features. The rest of
this introductory paper will summarize some exam-
ples of these features and how they fit together to
simplify the typesetting process.

2 Objects, inheritance, and conditions

CrossTEX enables a new idiom for managing con-
ference information that exemplifies the usefulness
of its object-oriented model, inheritance, and condi-
tional fields. Information that is always true is speci-
fied first; fields specified in square brackets introduce
conditions, such as a particular year for which the
‘location’ or ‘month’ fields have a particular value.
The result is readable and intuitive, but more im-
portantly collects information into a single object
that can adapt to its context:

@conference{nsdi,

shortname = "NSDI",

longname = "Symposium on Networked System

Design and Implementation",

[year=2007] address=CambridgeMA, month=apr,

[year=2006] address=SanJose, month=may,

[year=2005] address=Boston, month=may,

[year=2004] address=SF, month=mar,

}

The example defines the object nsdi, which
typically has the value “Symposium on Networked
System Design and Implementation” when assigned
to a field. Additionally, however, this object is aware
that if the referring context includes, for example,
the year 2006 and does not already specify an ad-
dress, the address will be assigned SanJose, a ref-
erence to a @location object representing the city
in California. Thus, the papers in the proceedings
of that conference need not specify that information
at all, but simply pull in all redundant information
from nsdi:

@inproceedings{credence,

title = "Experience with an Object Reputation

System for Peer-to-Peer Filesharing",

author = "Kevin Walsh and Emin {G\"un} Sirer",

booktitle = nsdi,

year = 2006,

}

The assignment booktitle = nsdi is like spec-
ifying either booktitle = "NSDI" or booktitle =

344 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

"Symposium . . . ", depending on whether the au-
thor has chosen long or short names to be used
for @conference objects. Additionally, precisely
because the credence object does not specify an
address or month, those fields will appear exactly
as they do in the conference. This concision and
consistency make conferences a perfect example of
CrossTEX’s flexibility from both the perspective of
the database and the author.

Because CrossTEX encourages centralized ob-
jects with a lot of information, it can be very im-
portant to group them into meaningful databases
and include them wherever they are needed with the
@include statement. CrossTEX includes files from a
standard path, including such databases as dates,
locations, conferences-cs (which contains en-
tries such as the one above for many of the important
computer science conferences), journals-cs, and
so forth. The standard database is always included
when CrossTEX begins, which allows the adminis-
trator to include system-wide databases that must
always be available. By default, standard includes
dates (for backwards compatibility with BibTEX
and also because dates are so universally useful)
and the databases containing the default rules for
capitalizing titles.

Databases can also be found in the same direc-
tory as the document being processed. Because that
directory is searched before the system directories,
users can easily supply their own databases, even
a standard database to control their own defaults.
This flexibility allows maintainers and authors to
work together to easily find, re-use, and adapt help-
ful databases.

3 Consistency and automation

Title case is one of the most common inconsisten-
cies when using BibTEX. Often, some papers appear
with lower-case titles, some with all upper-case, and
some with mixed title-case. Entries haphazardly
capitalize key acronyms such as “BGP”, and proper
nouns such as “Internet”.

CrossTEX ensures that all titles follow the same
uniform capitalization standard, even if they appear
in a wild variety of styles in the database. By de-
fault, the first letter of each word will become cap-
italized, the rest lower; this is the system known as
“titlecase”. CrossTEX is very careful to ensure the
titles come out looking “good”: It retains as-is words
in StudlyCaps or CAPITALS, LATEX commands, and
anything in math mode; compound words such as
“Peer-to-Peer” are split into words, capitalized cor-
rectly, and re-assembled; and finally a list of known
phrases are found and formatted. For example, any

appearance of a string that is, regardless of case,
equivalent to “Internet” will be capitalized as “In-
ternet”. CrossTEX determines these phrases at run-
time in using @titlephrase commands:

@titlephrase "USENIX"

@titlephrase "Internet"

The standard include files define certain com-
mon computer science phrases such as these, but
they can appear in any database. Small words, such
as “a”, “an”, “the”, etc. are also handled specially:
They are made lower-case except at the beginning
of the title or after certain punctuation, such as long
dashes or colons. These, too, are determined at run-
time by @titlesmall commands:

@titlesmall "a"

@titlesmall "the"

Again, the standard include files define common
English small words.

Thus an example title with the default capital-
ization might appear as “Aardvark: A System for
Peer-to-Peer BGP Routing on the Internet”, despite
messy or inconsistent capitalization in the database.

CrossTEX provides other capitalization options:
With --titlecase lower, only the first letter of
the title and those following punctuation are capital-
ized, the rest put into lower-case. All of the special
cases for the default title-case still apply. Thus, the
example title would appear as “Aardvark: A system
for peer-to-peer BGP routing on the Internet”.

With --titlecase upper, everything, even
known phrases and small words, are put into upper-
case, thus: “AARDVARK: A SYSTEM FOR PEER-
TO-PEER BGP ROUTING ON THE INTERNET”.
Commands and math mode are still parsed and pro-
tected.

Finally, --titlecase as-is tells crosstex to
allow titles to appear as they are specified in the
database.

This philosophy of enforcing consistency by de-
fault makes it easier to achieve clean, professional
appearance in bibliographies without any interfer-
ence. At the same time, CrossTEX grants the user
control with styles and run-time options and even
fine-grained control over how specific phrases should
appear throughout the bibliography.

4 Default fields

When databases get large and many elements have
very similar fields — if, for example, they are all in
the same conference or have the same informative
category field — the CrossTEX command @default
can help make them more concise and prevent ty-
pos by allowing the maintainer to specify that field

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 345

Robert Burgess and Emin Gün Sirer

just once for the whole group. For example, in the
nsdi.xtx database, which contains the entries for
papers published in NSDI, every entry will obviously
have the same booktitle: nsdi. Because all of the
entries are from the DBLP [13] project, they also
share bibsource fields. Finally, they are grouped in
the database by year. With default values for fields,
maintainers can significantly shorten the database
and save effort and typos with the following (line
break is editorial):
@default booktitle = nsdi

@default bibsource

= "DBLP, http://dblp.uni-trier.de"

@default year = 2004

From this point in the file until the end, entries
will by default contain these default fields where
they are relevant. Because of this factorization and
the inheritance from nsdi, most papers now simply
state author, title, and pages fields. Later in the
file, however, are entries with different years. A new
@default command takes precedence over the first:
@default year = 2003

The booktitle and bibsource defaults are un-
changed, but now the year defaults to 2003. As
with field values inherited from referenced objects,
field values inherited from default definitions have
lower precedence than those specified in the object.
If it is desirable to allow an object to appear with
no year but not use the default, either put it before
the first default specifying the year field, or remove
the default by explicitly assigning @default year
= "". Defaults are easily overridden and serve only
to simplify and shorten the database.

5 Extending objects

Occasionally it is useful to add information to an
object that already exists. For example, an author
must cite a paper that appeared in NSDI 2005, but
the system database only has information about the
NSDI conference up to 2004. Obviously, the best
solution is to add the following line to fill in the
entry in the system conferences database:
[year=2005] address=Boston, month=may,

However, the author might not have permission
to edit the database. Two options come to mind:
Cut-and-paste the nsdi object into some local data-
base with a new name so there is no conflict, or put
the address and month directly into the paper’s en-
try rather than relying on inheritance. Neither is a
good solution. More desirable is to be able to add
information to the nsdi object, even though it has
already been defined in another database, using the
CrossTEX @extend feature:

@extend{nsdi, [year=2005] address=Boston,

month=may}

An @extend entry looks just like an object defi-
nition. However, rather than defining a new object,
CrossTEX will find the specified object and re-build
it with the information provided, retaining its old
fields where they are not changed.

Just as object definitions can specify multiple
keys to alias the same object, so can @extend state-
ments. If any keys specified do not yet refer to an
object, they will be created; however, CrossTEX will
report an error rather than change a key that al-
ready points to a different object than the one be-
ing extended, so it is not possible to accidentally
break extant keys. Authors can take advantage of
this to define shorter, easier-to-remember names for
database objects even when no fields need changing.

6 Constrained citations

CrossTEX borrows from nbibTeX the very useful no-
tion of constrained citation. Constrained citations
enable an author user to cite a work by specify-
ing pieces of information that uniquely identify it.
For instance, consider a reference to a paper writ-
ten by Emin Gün Sirer in 1999 on how to split up
virtual machines, which appeared at SOSP. The au-
thor could search the database for some terms that
will appear in the entry (e.g. 1999, sosp, sirer), copy
the key for the entry, and issue a plain citation using
that precise key. This is what many BibTEX users
do without thinking; however, with constrained ci-
tation, CrossTEX will search on your behalf.

A constrained citation begins with an exclama-
tion point, and specifies a series of colon-separated
terms that identify the reference being cited. Some
examples of constrained citations (line break is edi-
torial):
\cite{!author=sirer:title=virtual:year=1999}

\cite{!author=sirer:title=virtual

:title=machines:year=1999}

\cite{!author=sirer:author=walsh:year=2006}

Colons separate constraints. Each constraint
identifies a field that the reference must have, as well
as a string that should appear somewhere within
that named field. So author=smith will match both
“Smith” and “Smithson”.

Sometimes, multiple constraints apply to the
same field. Specifying the same field multiple times,
as in the second and third examples above, is per-
fectly acceptable, but tedious. Instead, CrossTEX
provides a way to specify multiple constraints for
the same field: Every word separated by a “-” sign
is treated as a separate constraint. Thus the exam-
ples above can appear as:

346 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

\cite{!author=sirer:title=virtual:year=1999}

\cite{!author=sirer:title=virtual-machines

:year=1999}

\cite{!author=sirer-walsh:year=2006}

Multiple constraints within a given field are not
ordered and can appear anywhere in the string, so
“virtual-machines” will match “virtual machines”,
as well as “machines virtual”, and even “building a
machineshop virtually”.

Several shorthands make constrained citations
even easier to specify by providing defaults for field-
names. If the fieldnames are missing, the first con-
straint defaults to “author”. The second constraint
defaults to “title” if the value is not numeric; if it
is, it defaults to “year”. Finally, the last constraint
defaults to “year”. So the examples above can be
even shorter:
\cite{!sirer:virtual:1999}

\cite{!sirer:virtual-machines:1999}

\cite{!sirer-walsh:2006}

Two caveats are worth remembering about con-
strained citations. First, the citation needs to be
uniquely identifiable. If the constraints match more
than one object, CrossTEX prints an error and iden-
tify the matching objects. The author can then
specify more constraints until the reference is cor-
rect or switch to a plain citation based on the search
CrossTEX performed. Second, due to a limitation
in LATEX, referring to the same work through dif-
ferent constraints (e.g. !sirer:virtual:1999 and
!sirer:virtual-machines:1999) will cause Cross-
TEX to flag an error so the citation does not appear
twice in the references section, because LATEX would
think it was two different works. For each work, one
must decide on a set of constraints and use them
consistently throughout a document.

Overall, constrained citations are a convenient
way to cite papers without having to look anything
up; they fit naturally to the way people recall cita-
tions.

7 Extending CrossTEX

CrossTEX is designed to be easy to extend with
only trivial knowledge of Python. New objects or
fields are defined by editing the standard objects
module crosstex.objects, which will be found
wherever CrossTEX’s library files are installed as
crosstex/objects.py.

To create a new field for a particular object
type, find its definition (e.g. the section defining the
@string object begins class string). Most ob-
jects already define some fields; simply copy that
syntax for your own field. To create an entirely new
class @foo which is identical to a current one named

@bar, add the following to the end of the list of ob-
jects:

class foo(bar):

pass # ’pass’ is only necessary

if no fields are defined.

Fields are defined as optional or required by as-
signing them the values OPTIONAL and REQUIRED,
respectively. To make an optional field required or
a required field optional, simply assign it the new
value in the class where you want the change. To
allow a field to inherit its value from another field
in the same object if left blank, assign a string con-
taining the name of the other field. A list containing
OPTIONAL, REQUIRED, and one or more string field
names will be processed and define several sibling
fields and the given requirement level. For example:

class foo(bar):

baz = REQUIRED

blah = OPTIONAL

quux = [REQUIRED, ’baz’, ’blah’]

This defines a new kind of object @foo, which
behaves the same as @bar; additionally, the ‘baz’
field is required, the ‘blah’ field is optional, and the
‘quux’ field is required but if unspecified will try to
take its value from ‘baz’ or ‘blah’ in that order.

Styles are defined in small Python modules in
the style directory in the same place you found
objects.py. There you will find the default styles,
plain.py, full.py, etc. Styles are built up with
small filter functions, many of which are provided
in crosstex.objects. Each field is filtered through
four phases:

• Production, in which an initial value is gener-
ated from the object itself;

• List filtering, if the value is a list;

• List formatting, to turn the list into a string for
the final step; and

• Filtering, in which zero or more filters modify
the value into its final form.

As a starter, consider the following statements taken
from existing styles:

misc._addproducer(emptyproducer, ’label’)

conference._addfilter(proceedingsfilter,’value’)

misc._addfilter(emphfilter, ’fullpublication’,

’booktitle’)

The first line states that the label attribute of
any @misc object (or any object of a type derived
from @misc) can be produced by emptyproducer
if that function returns anything other than None.
(emptyproducer is defined in crosstex.objects
and always returns an empty string, which in the

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 347

Robert Burgess and Emin Gün Sirer

case of labels causes LATEX to default to numeric
citation.)

The second line causes the value of objects de-
rived from @conference to be filtered through a
function that prepends ‘Proceedings of the’ to the
value.

The last line filters the ‘booktitle’ field of ob-
jects derived from @misc, but only when used within
the ‘fullpublication’ field (which happens to be a vir-
tual field defined solely by attaching producers to it).

It is important to note that filters and produc-
ers are applied starting from the most recent, so
later producers will take precedence and later fil-
ters will be nested inside earlier filters. The stan-
dard styles are well-commented and should provide
a good start towards extending CrossTEX with new
stylistic features.

Finally, because CrossTEX also searches for
styles in the same directory as the file being pro-
cessed, one can develop styles without editing any-
thing installed system-wide. This can be useful for
personal, per-paper, or experimental styles, or even
extending CrossTEX without the privileges of the
system administrator.

8 Related work

BibTEX is the dominant tool in the TEX world to au-
tomatically format bibliographies. The correspond-
ing tool in roff typesetting is refer, which uses
a similar relational model and a more concise but
slightly less user-readable database format. refer
also introduced the notion of semantic (constrained)
citation to computer typesetting. nbibTeX [15] is a
true drop-in replacement for BibTEX that supports
the same database language and style files, but adds
support for semantic citations in order to assist mul-
tiple authors working together from a large data-
base. EndNote [3] is a commercial product that
manages databases for Microsoft Word; it uses a
GUI database editor and its own database format,
adapted from that of refer.

Because of BibTEX’s dominance but lack of
easy automation, the community has developed nu-
merous database editors and other tools to sup-
port it. Database editors such as Pybliographer [7],
KBibTEX [6], and JabRef [5] are relevant to Cross-
TEX because they attempt to solve some of the
same problems without changing BibTEX and also
because, since CrossTEX is backwards-compatible
with their BibTEX output, one can take advantage
of both.

Other tools for formatting bibliographies for
publication on the web exist, such as the BibTEX-
XML-HTML [9] project, which provides a tool for

converting bibliographies to HTML documents by
first converting them into XML. xtx2html has the
advantage of integrated styling using the same meth-
ods as styling documents themselves.

Many projects address the need for large cen-
tral databases, including the DBLP [13] project,
which has so far assembled bibliography entries
in BibTEX format for more than 870,000 publi-
cations in computer science, some of which have
been converted to be distributed with CrossTEX.
Other large databases and integrated search en-
gines include CiteSeer [2], Google Scholar [4], and
arXiv [10]. RefDB [8] is an approach to the actual
sharing of databases, which allows users to share
bibliographies over the network using SQL databases
and the RIS bibliography format. However, all of
these efforts are focused on providing authors with
the ability to find a reference in order to copy-and-
paste it into their own local database — in short,
assisting with looking up the information but not
solving the problem of centralizing information be-
cause of the limitations of BibTEX. CrossTEX is
designed to address this problem and allow vast
databases such as these projects to be easily incor-
porated directly into a document, as well as assisting
those who must keep the databases up-to-date.

9 Conclusions

We have presented CrossTEX, a modern bibliog-
raphy management tool based on and replacing
BibTEX. CrossTEX solves a number of problems
in BibTEX, including its relational model that re-
quires duplication of information, the dependence of
presentation details such as abbreviation on choices
made in the database, arbitrary object keys, and an
impenetrable style language.

The primary contribution of CrossTEX is its
object-oriented database language, which brings the
power of inheritance to bear on the goal of specify-
ing information in only one place, to be used and
adapted everywhere it is needed. The many kinds
of CrossTEX objects allow useful fields to be bun-
dled together, assigned both long and short names,
and inherited in different forms throughout the data-
base. New kinds of objects allow precise seman-
tics and self-explanatory databases. Providing full
author names and both long and short versions of
strings allow typesetting-time decisions about style
without modifying the database.

Conditional fields allow data that depend on
context, such as locations of a conference by year, to
be collected together into one place so they are vis-
ible and useful together. Because such conditional
fields are also inherited, objects automatically adapt

348 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

to the contexts in which they are used.
CrossTEX enforces consistency by using a so-

phisticated and flexible algorithm to guarantee con-
sistent capitalization in paper titles and applying
abbreviation decisions across every object. Automa-
tion of tedious tasks such as abbreviation and capi-
talization prevents human error while being easy to
customize.

Backwards compatibility with BibTEX com-
bined with fundamentally new idioms and power-
ful semantics make CrossTEX easier to use and less
error-prone than its predecessor. Overall, Cross-
TEX makes consistency and professional appearance
easy to achieve, both in databases and typeset doc-
uments.

References

[1] CS Bib. http://liinwww.ira.uka.de/
bibliography/index.html. Accessed June
15, 2007. The Collection of Computer Science
Bibliographies.

[2] CiteSeer. http://citeseer.ist.psu.edu/.
Accessed June 15, 2007. Scientific literature
digital library.

[3] EndNote. http://www.endnote.com/.
Accessed June 15, 2007. A PC product
that does what BibTEX does, for Word on
Windows.

[4] Google Scholar. http://scholar.google.
com/. Accessed June 15, 2007. Search engine
dedicated to scientific publications on the
web.

[5] JabRef. http://jabref.sourceforge.net/.
Accessed June 15, 2007. A graphical database
editor for BibTEX based on Java.

[6] KBibTEX. http://www.unix-ag.uni-kl.
de/~fischer/kbibtex/screenshots.html.
Accessed June 15, 2007. A graphical database
editor for BibTEX.

[7] Pybliographer. http://www.pybliographer.
org/. Accessed June 15, 2007. A Python tool
for managing bibliographic databases.

[8] RefDB. http://refdb.sourceforge.net/.
Accessed June 15, 2007. RefDB is a reference
database and bibliography tool for SGML,
XML, and LATEX/BibTEX documents that
allows users to share databases over a
network.

[9] BibTEX-XML-HTML Project. http:
//www.authopilot.com/xml/home.htm.
Accessed June 15, 2007. Transforms BibTEX
databases into HTML by way of XML.

[10] arXiv. http://arxiv.org. Accessed June
15, 2007. E-prints in physics, mathematics,
computer science and quantitative biology.

[11] Donald E. Knuth. The TEXbook.
Addison-Wesley, Reading, Massachusetts,
1984.

[12] Leslie Lamport. LATEX: A Document
Preparation System. 2nd Edition,
Addison-Wesley, 1994.

[13] Michael Ley. DBLP. http://www.
informatik.uni-trier.de/~ley/db/.
Accessed June 15, 2007. DBLP is a huge
effort by a dedicated team that has so far
assembled bibliographic entries for 830,000
publications in computer science. The
databases shipped with CrossTEX are derived
from DBLP.

[14] Oren Patashnik. BibTEXing. February 1988.
[15] Norman Ramsey. NbibTEX. http:

//www.eecs.harvard.edu/~nr/nbibtex/.
Accessed June 15, 2007. The origin of
constrained citation.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 349

http://liinwww.ira.uka.de/bibliography/index.html
http://liinwww.ira.uka.de/bibliography/index.html
http://citeseer.ist.psu.edu/
http://www.endnote.com/
http://scholar.google.com/
http://scholar.google.com/
http://jabref.sourceforge.net/
http://www.unix-ag.uni-kl.de/~fischer/kbibtex/screenshots.html
http://www.unix-ag.uni-kl.de/~fischer/kbibtex/screenshots.html
http://www.pybliographer.org/
http://www.pybliographer.org/
http://refdb.sourceforge.net/
http://www.authopilot.com/xml/home.htm
http://www.authopilot.com/xml/home.htm
http://arxiv.org
http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/
http://www.eecs.harvard.edu/~nr/nbibtex/
http://www.eecs.harvard.edu/~nr/nbibtex/

	Introduction
	What's wrong with BIBTeX?
	A modern bibliography tool

	Objects, inheritance, and conditions
	Consistency and automation
	Default fields
	Extending objects
	Constrained citations
	Extending CrossTeX
	Related work
	Conclusions

