
Generating Multiple Outputs from Ω

John Plaice
School of Computer Science and Engineering
The University of New South Wales
UNSW SYDNEY NSW 2052, Australia
plaice@cse.unsw.edu.au

http://www.cse.unsw.edu.au/~plaice

Yannis Haralambous
Département Informatique
École Nationale Supérieure des Télécommunications de Bretagne
CS 83 818, 29238 Brest Cédex, France
Yannis.Haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

Abstract

In this paper, we describe how to generate multiple outputs (DVI, PostScript, PDF, XML, . . .)
from the same Ω document. The Ω engine is augmented with a library for manipulating mul-
tidimensional contexts. Each macro can be defined in multiple versions, and macros can thereby
adapt to differing contexts. Macros can be specialized for several different output formats, without
changing the overall structure. As a result, the same document can be used to easily produce dif-
ferent output formats, with appropriate specializations for each of them, without having to make
any changes to the document itself.

Résumé

Dans cet article nous décrivons le processus de génération de sorties multiples (DVI, PostScript,
PDF, XML, . . .) à partir du même document Ω. Le moteur Ω a été muni d’une bibliothèque de
sous-routines dédiée à la manipulation de contextes multi-dimensionnels. Les macros TEX peuvent
être spécialisés selon le format de sortie, sans changer leur structure globale. Ainsi, le même docu-
ment peut, sans la moindre modification, produire facilement différents formats de sortie avec les
spécialisations ad hoc.

Introduction

We present in this paper a new approach to generating
typeset and structural material from Ω in a number of
different output formats. This approach generalizes the
existing approaches of DVI postprocessors capable of in-
terpreting DVI \special’s, specialized modifications to
the typesetting engine, judicious use of alternate versions
of macros, and external interpreters of subsets of LATEX.

Key to this new approach is the introduction inΩ of
versioned macros and versioned ΩTPs that can adapt their
behavior to a dynamically running tree-structured con-
text that permeates the entire typesetting process. As a
result, when a text is to be typeset for a new output for-
mat, then new versions of macros can be written at any
level, without changing the existing macros, thereby mini-
mizing the amount of additional work to be undertaken.

Versioned macros and ΩTPs have ramifications well
beyond the structural issues involved in generating mate-

rial for different output formats: versioning the typeset-
ting process also provides a high-level interface for mul-
tilingual typesetting, an issue that has hindered the de-
velopment of the Ω system since its inception. See the
paper presented at TUG 2003, with Chris Rowley [3],
for a detailed discussion.

However, it is not sufficient simply to be able to gen-
erate different versions of macros and ΩTPs; the TEX
document model is very simple, and the one-pass doc-
ument manipulation approach— analogous to the Pascal
language in which it was written—built into the soft-
ware acts like a straitjacket when one wishes to pass as in-
put or to generate as output significantly different docu-
ment structures.

Therefore, at least three additional components
need to be added to Ω in order for it to be fully adapt-
able to different formats. First is the ability to directly
applyΩTPs and other filters to the input stream, even be-
fore, and possibly bypassing, the macro processing stage.

512 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Generating Multiple Outputs from Ω

Second is the ability to directly apply ΩTPs to the out-
put stream, possibly without even generatingDVI output.
Third is to supply general hooks that allow the user to
manipulate internal document structure, and not simply
horizontal and vertical boxes.

In this article, we present the work that we have
undertaken towards these goals. We begin with a brief
background, describing what we consider to be the main
contributions of existing extensions of the general TEX
framework (not just to the TEX engine), and show how
these different approaches all contribute to a better un-
derstanding of the general problem of generating differ-
ent outputs from the same files.

The model for contexts that we have adopted was
developed by Paul Swoboda in his PhD thesis [7]. It
is the most highly developed presentation of intensional
versioning, an approach to the development of software
variants first proposed by the first author and WilliamW.
Wadge [6]. We give a discussion of intensional program-
ming and versioning, then give a detailed presentation of
contexts and context operators.

We then show how contexts have been integrated
into Ω. To do this, new Ω primitives are introduced for
creating and using different versions of macros, and for
changing and manipulating the runtime context. In ad-
dition, means for having versions of internal and exter-
nal ΩTPs are defined.

These technical sections are followed by a discus-
sion of how the internals of the Ω engine should be reor-
ganized to facilitate the generation of multiple outputs.

TEX and its Extensions

TheTEX document model supposes that a stream of text,
interspersed with control sequences, is to be transformed
into a series of pages, each of which is a vertical box that
contains other boxes, either vertical or horizontal. Each
page is generated into DVI output, in the process losing
some of the information contained in the page.

The boxes are generated on the fly. Although cer-
tain items can be stored for later use in registers, accessed
much as one would in assembly programming, TEX’s doc-
ument model essentially consists of the following pro-
cesses:
• transforming streams of characters into streams of
typeset glyphs and boxes (main loop);

• building math lists from TEXmath, then transform-
ing the lists into streams of typeset glyphs (math
mode);

• transforming streams of typeset glyphs, with in-
serted hyphenation points, into streams of horizon-
tal boxes, corresponding to lines (paragrapher);

• building boxes, corresponding to tables, from align-
ment specifications;

• building pages from streams of boxes and glue (page
builder).
TEX’s operation is undertaken in one pass, and it is

very difficult, if not impossible, to be able to manipulate
intermediate data structures as they are being built.

The different extensions to TEX and the different
DVI postprocessors have all taken different approaches,
which is quite normal given their divergent aims.

First are the DVI postprocessors, dvips (generat-
ing PostScript) and dvipdfm (generating PDF). Each of
these programs transforms DVI output, augmented with
DVI \special’s, specifically designed for use with that
program and generated by TEX through its macro mech-
anism, into the relevant output format.

The main advantage of this approach is that it en-
courages modularity, in the sense that the typesetter is
separate from the pretty-printer. However, one can only
put into \special’s information that is made available to
the user. Information about intermediate data structures
is not directly available, so can only be approximated.

Second is the LATEX2HTML approach. This tool
does not do typesetting, rather it reorganizes the struc-
ture of the text into HTML. It does not use the TEX
engine, but itself parses a large (reasonable) subset of
LATEX. For parts that cannot be directly translated into
HTML, such as mathematics, then it generates small
LATEX files, calls LATEX, then dvips, then transforms
then into PNG files. Although LATEX2HTML is a useful
tool, in its current form it will never have access to TEX’s
internal data structures, since it never calls TEX.

Third, also for generating HTML, is TEX4HT,
which produces HTML files that resemble DVI pages
generated by TEX. TEX4HT is also standalone, but it
does use TEX for parsing and typesetting the input. It
makes use of extensive DVI \special’s.

Fourth are the extensions to theTEX engine, namely
e-TEX, pdfTEX, and Ω. The e-TEX extensions fo-
cus mainly on improving the macro expansion facilities.
They do not change the typesetting, but do provide the
very useful ability to reparse an input sequence.

The pdfTEX extensions are two-fold. First is some
experimental work simulating some of Peter Karow’s
hz program. Second, more commonly used, are the ex-
tensions to generate PDF directly rather than DVI. In ad-
dition to its new pretty-printer for TEX pages, pdfTEX
provides built-in mechanisms, using whatsit nodes, for
generating such things as PDF forms and margin items.

Although pdfTEX is practical, in the sense that one
can quickly generate PDF files from a TEX file, the fact
that all of the functionality is hard-coded limits the pos-
sibility for extending the same system. For example, the
current pdfTEX does not allow EPS files to be included
in the PDF files that it generates.

The Ω extensions are of a more general nature.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 513

John Plaice and Yannis Haralambous

In the Ω model, before glyph selection, the character
stream to be typeset is segmented and processed by a se-
ries of filters, each reading from standard input and writ-
ing to standard output. Once all of the filters are applied,
the stream is passed to the standard TEX character-level
typesetter.

In addition, Ω also includes an experimental pretty-
printer for MathML and XML. One of the goals of
this work is to provide the means for recovering struc-
ture, particularly in mathematics expressions, in TEX and
LATEX files that do not have perfect markup. However,
this functionality is not in any way integrated with the
ΩTP mechanism.

From this discussion, one can start to elucidate what
is needed. One should be able to have, in a single system:
• internal data structures corresponding to page, para-
graph, line, etc., that can be explicitly manipulated
by the user;

• input mechanisms not based on the macro language
that generate these data structures;

• more advanced macro-processing and other pro-
gramming languages to manipulate these data struc-
tures;

• mechanisms to pretty-print the data structures in
multiple output formats;

• limiting the output-format-specific additions to the
internals of the typesetting engine.
For this whole approach to work, it is important that

as one moves from one mechanism to another, chang-
ing input or output formats, and what is expected of the
typesetting engine, that the whole framework be suffi-
ciently flexible that one does not have to completely re-
program everything. In other words, the system must
adapt to a complex context with many parameters. The
next few sections focus in detail on how to deal with con-
text in Ω; they are followed by a discussion of the points
raised in the above wishlist.

Intensional Programming

Intensional programming [4] is a form of computing that
supposes that there is a multidimensional context, and
that all programs are capable of adapting themselves to
this context. The context is pervasive, and can simulta-
neously affect the behavior of a program at the lowest,
highest and middle layers.

When an intensional program is running, there is a
current context. This context is initialized upon launching
the program from the values of environment variables,
from explicit parameters, and possibly from active con-
text servers. The current context can be modified dur-
ing execution, either explicitly through the program’s ac-
tions, or implicitly, through changes at an active context
server.

A context is a specific point in a multidimensional
space, i.e., given a dimension, the context will return a
value for that dimension. The simplest contexts are dic-
tionaries (lists of attribute-value pairs). A natural gen-
eralization is what will be used in this paper: the values
themselves can be contexts, resulting in a tree-structured
context. The set of contexts is furnished with a partial
order ⊑ called a refinement relation.

For example, to describe Australian English, we
could use the context:

<script:<Latin>+

lang:<English;dialect:<Australian>>>

where script and lang are called dimensions, and
lang:dialect is called a compound dimension. See be-
low for more details.

During execution, the current context can be quer-
ied, dimension by dimension, and the program can adapt
its behavior accordingly. In addition, if the programming
language supports it, then contextual conditional expres-
sions and blocks can be defined, in which themost relevant
case, with respect to the current context and according to
the partial order, is chosen among the different possibil-
ities.

In addition, any entity can be defined in multiple
versions, which are mappings from contexts to objects.
Whenever an identifier designating an entity appears in
an expression or a statement, then the most relevant ver-
sion of that entity, with respect to the current context, is
chosen. This is called the variant substructure principle.
The general approach is called intensional versioning [6].

The ISE programming language [5] was the first lan-
guage combining both intensional programming and ver-
sioning. It is based on the procedural scripting language
Perl, and it has greatly facilitated the creation of multi-
dimensional Web pages. Similar experimental work has
been undertaken under the supervision of the first author
with C, C++, Java, and Eiffel. And, when combined with
a context server (see Paul Swoboda’s PhD thesis [7]), it
becomes possible for several documents or programs to
be immersed in the same context.

Structuring the Context

We use the same notation to designate contexts and ver-
sions of entities. This section has three subsections.
First, we define contexts and the refinement relation.
Then, we define version domains, which hold versioned
entities. Finally, we define context operators, which are
used to change from context to context. In the following
section, we will show how all of these are to be used.

Contexts and Refinement. Let
{

(Si,⊑i)
}

i
be a collection

of sets of ground values, each with its own partial order.
Let S = ∪iSi. Then the set of contexts C (∋ C) over S

514 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Generating Multiple Outputs from Ω

is given by the following syntax:
C ::= ⊥ | A | Ω | 〈B; L〉 (1)
B ::= ǫ | α | ω | v (2)
L ::= ∅ | d :C + L (3)

where d, v ∈ S.
There are three special contexts:

• ⊥ is the empty context (also called vanilla);
• A is the minimally defined context, just more defined
than the empty one;

• Ω is the maximally defined context, more defined
than all other contexts.

The normal case is that there is a base valueB, along with
a context list (L for short), which is a set of dimension-
context pairs. We write δL for the set of dimensions ofL.

A sequence of dimensions is called a compound di-
mension. It can be used as a path into a context. Formally:

D = · | d :D (4)
If C is a context, C(D) is the subtree of C whose root is
reached by following the path D from the root of C:

C(·) = C (5)
〈B; d :C ′ + L〉 (d :D) = C ′(D) (6)

As with contexts, there are three special base values:
• ǫ is the empty base value;
• α is the minimally defined base value, just more de-
fined than the empty base value;

• ω is the maximally defined base value, more defined
than all others.

The normal case is that a base value is simply a scalar.
To the set C, we add an equivalence relation ≡, and

a refinement relation ⊑. We begin with the equivalence
relation:

⊥ ≡ 〈ǫ; ∅〉 (7)
A ≡ 〈α; ∅〉 (8)

Ω ≡

〈

ω;
∑

d ∈ S

d :Ω

〉

(9)

L0 ≡L L1

〈B; L0〉 ⊑ 〈B; L1〉
(10)

Thus,⊥ andA are notational conveniences, whileΩ can-
not be reduced. The normal case supposes an equiva-
lence relation ≡L over context lists:

∅ ≡L d :⊥ (11)
d :〈B; L + L′〉 ≡L d :

(

〈B; L〉 + 〈B; L′〉
)

(12)
L ≡L ∅ + L (13)
L ≡L L + L (14)

L + L′ ≡L L′ + L (15)
L + (L′ + L′′) ≡L (L + L′) + L′′ (16)

The + operator is idempotent, commutative, and asso-
ciative. Now we can define the partial order over entire

contexts:
⊥ ⊑ C (17)
C ⊑ Ω (18)
C 6= ⊥

A ⊑ C
(19)

C0 ≡ C1

C0 ⊑ C1

(20)

B0 ⊑B B1 L0 ⊑L L1

〈B0; L0〉 ⊑ 〈B1; L1〉
(21)

which supposes a partial order ⊑B over base values:

ǫ ⊑B B (22)

B ⊑B B (23)
B ⊑B ω (24)
B 6= ǫ

α ⊑B B
(25)

v0, v1 ∈ Si v0 ⊑i v1

v0 ⊑B v1

(26)

The last rule states that if v0 and v1 belong to the same
set Si and are comparable according to the partial or-
der ⊑i, then that order is subsumed for refinement pur-
poses.

The partial order over contexts also supposes a par-
tial order ⊑B over context lists:

∅ ⊑L L (27)

L0 ≡L L1

L0 ⊑L L1

(28)

C0 ⊑ C1

d :C0 ⊑L d :C1

(29)

L0 ⊑L L1 L′

0 ⊑L L′

1

L0 + L′

0 ⊑L L1 + L′

1

(30)

Rule 30 ensures that the + operator defines the least up-
per bound of two context lists.

Context and Version Domains. When doing intensional
programming, we work with sets of contexts, called con-
text domains, written C. There is one operation on con-
text domains, namely the best-fit. Given a context do-
main C of existing contexts and a requested context Creq,
the best-fit context is defined by:

best(C, Creq) = max{C ∈ C | C ⊑ Creq} (31)

If the maximum does not exist, there is no best-fit con-
text.

Typically, we will be versioning something, an ob-
ject of some type. This is done using versions, simply
(C, object) pairs. Version domains V then become func-
tions mapping contexts to objects. The best-fit object in a
version domain is given by:

bestO(V , Creq) = V(best(dom V , Creq)) (32)

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 515

John Plaice and Yannis Haralambous

Context Operators. Context operators allow one to selec-
tively modify contexts. Their syntax is similar to that of
contexts.

Cop ::= C | [Pop; Bop; Lop] (33)
Pop ::= −− | ǫ (34)
Bop ::= − | B (35)
Lop ::= ∅Lop

| d :Cop + Lop (36)
A context operator is applied to a context to transform it
into another context. (It can also be used to transform a
context operator into another; see below.) The − oper-
ator removes the current base value, while the −− oper-
ator in Pop is used to clear all dimensions not explicitly
listed at that level.

Now we give the semantics for C Cop, the applica-
tion of context operator Cop to context C:

C0 C1 = C1 (37)
Ω Cop = error (38)

〈B; L〉 [−−; Bop; Lop] = (39)
〈

B; L\(δL − δLop)
〉

[ǫ; Bop; Lop]

〈B; L〉 [ǫ; Bop; Lop] = (40)
〈

(B Bop); (L Lop)
〉

The general case consists of replacing the base value and
replacing the context list. First, the base value:

B − = ǫ (41)
B0 B1 = B1 (42)

Now, the context list:
L ∅Lop

= L (43)
(d :C + L) (d :Cop + Lop) = (44)

d : (C Cop) + (L Lop)

L (d :Cop + Lop) = (45)
d : (∅ Cop) + (L Lop), d 6∈ δL

Context operators can also be applied to context op-
erators. There are two cases:

[Pop; Bop0
; Lop0

] [ǫ; Bop1
; Lop1

] = (46)
[

Pop; (Bop0
Bop1

); (Lop0
Lop1

)
]

[Pop; Bop0
; Lop0

] [−−; Bop1
; Lop1

] = (47)
[

−−; (Bop0
Bop1

);
(

(Lop0
\(δLop0

− δLop1
)) Lop1

)

]

Now that we have given the formal syntax and se-
mantics of contexts, version domains, and context oper-
ations, we can move on to typesetting.

The Running Context in Ω

As is standard, the abstract syntax is simpler than the
concrete syntax, which offers richer possibilities to fa-

cilitate entry. Here is the concrete syntax for con-
texts:

C ::= <> Empty context
| ~~ Minimum context
| ^^ Maximum context
| <val> Base value
| <L> Subversions
| <val+L> Base & subversions

val ::= ~ Minimum value
| ^ Maximum value
| string Normal value

L ::= dim:C [+ dim:C]∗

dim ::= string

As for the context operation, here is the syntax:
Cop ::= C Replace the context

| [] No change
| [valop] Change base
| [Lop] Change subversions
| [valop+Lop] Change base & subs

valop ::= - Clear base
| val New value
| -- Clear subversions
| val+-- New base, clear subs
| --- Clear base & subs

Lop ::= dim:Cop [+ dim:Cop]∗

In Ω, the current context is given by:
\contextshow{}

If D is a compound dimension, then the subversion at di-
mension D is given by:

\contextshow{D}

while the base value at dimension D is given by:
\contextbase{D}

This context is initialized at the beginning of an
Ω run with the values of environment variables and
command-line parameters. Once it is set, it can be
changed as follows:

\contextset{Cop}

Adapting to the Context

During execution, there are three mechanisms for Ω to
modify its behavior with respect to the current con-
text: (1) versioned execution flow, (2) versionedmacros, and
(3) versioned ΩTPs.

Execution Flow. The new \contextchoice primitive
is used to change the execution flow:

\contextchoice{{Cop1
}=>{exp1},

. . .

{Copn
}=>{expn}

}

516 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Generating Multiple Outputs from Ω

Depending on the current context C, one of the ex-
pressions expi will be selected and expanded. The
one chosen will correspond to the best-fit context among
{C Cop1

, . . . , C Copn
} (see the discussion above of

Context and Version Domains).

Macros. The Ω macro expansion process has been ex-
tended so that any control sequence can have multiple,
simultaneous versions, at the same scoping level. When-
ever \controlsequence is expanded, the most relevant, i.e.
the best-fit, definition, with respect to the current con-
text, is expanded.

A version of a control sequence is defined as follows:

\vdef{Cop}\controlsequence args{definition}

If the current context is C, then this definition defines
the C Cop version of \controlsequence. The scoping of
definitions is the same as for TEX.

This approach is upwardly compatible with the
TEX macro expansion process. The standard TEX def-
inition:

\def\controlsequence args{definition}

is simply equivalent to

\vdef{<>}\controlsequence args{definition}

i.e., it defines the empty version of a control sequence.
As stated above, during expansion the best-fit defini-

tion of \controlsequence, with respect to the current con-
text, will be expanded whenever it is encountered. It is
also possible to expand a particular version of a control
sequence, by using:

\vexp{Cop}\controlsequence

ΩTPs and ΩTP-lists. Beyond the ability to manipulate
larger data structures than does TEX, Ω allows the user
to apply a series of filters to the input, each reading from
standard input and writing to standard output. Each of
the filters is called an ΩTP (Ω Translation Process), and
a series of filters is called an ΩTP-list.

There are two kinds of ΩTPs: internal and exter-
nal. Internal ΩTPs are finite state machines written in an
Ω-specific language, and that are compiled before being
interpreted by the Ω engine. External ΩTPs are stand-
alone programs, reading from standard input and writing
to standard output, like Unix filters.

Internal and external ΩTPs handle context differ-
ently. For external ΩTPs, the context information can be
passed on through an additional parameter to the system
call invoking the external ΩTP:

program -context=context

Internal ΩTPs have been modified so that every in-
struction can be preceded by a context tag. Using the

simplest syntax, this becomes:
<<context>> pattern => expression

When an internal ΩTP is being interpreted, an instruc-
tion is only examined if its context tag (defaulting to the
empty context) is less than the current running context.

When ΩTPs and ΩTP-lists are being declared in Ω,
the \contextchoice operator can be used to build ver-
sioned ΩTP-lists. These will be particularly useful for
multilingual typesetting. See [3] for more details.

The Internals of the Typesetting Engine

The versioned macros and ΩTPs presented in the pre-
vious sections clearly facilitate the development of soft-
ware that is more flexible, in the sense that if new pa-
rameters are added to a system, new code only needs to
be written for those parts affected directly by the new
parameters.

But it is still not clear how these mechanisms will
help solve this problem of having multiple input and out-
put formats for use with the same typesetting system, in
particular, inside Ω.

We outline the solution here, since at the time of
writing, we have not yet finalized the syntax.

Essentially, all of Ω’s internal data structures will be
made directly accessible to the user. These include at
least:
• streams of characters;
• streams of glyphs;
• math lists;
• input to each ΩTP application;
• output from each ΩTP application;
• paragraphs;
• tables;
• pages;
• other kinds of boxes.

For each of these data structures will be specified a
canonical serialization and deserialization. For each of
the algorithms that can be applied to these data struc-
tures, a means for applying the algorithms from the user
level will be defined as well.

As a result, it will be possible to completely ma-
nipulate what we might call the “canonical input” and
the “canonical output” of the typesetter. Then inputting
from different formats and outputting to different for-
mats becomes much simpler. For input from a specific in-
put format, an ΩTP-list must be defined to translate that
input format into the “canonical input”. For output to
a specific output format, an ΩTP-list must be defined to
translate from the “‘canonical output” to the output for-
mat. These ΩTP-lists may well be parameterized by the
current context to achieve specific results.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 517

John Plaice and Yannis Haralambous

This approach is suitable for generic content that is
found in all input and output files, but what about ele-
ments that are relevant for only specific kinds of input or
output? For these elements, it is the versioned macros
that will come into play. Some macros will have versions
defined to deal with these elements only when the right
conditions occur in the context.

Conclusions

Given the successful experimental work in generating
MathML and XML directly from the Ω engine, we con-
sider that the approach presented in this paper is both
elegant and doable. In fact, we consider that this ap-
proach makes it possible to integrate into a single frame-
work most of the existing extensions to TEX, and its orig-
inal view that a document should be transformed into a
DVI file that is in turn converted to (for example) Post-
Script.

However, the implications go well beyond just inte-
grating existing work, even if that goal is both laudable
and desirable. New possibilities will arise, since the user
will no longer be forced to use the TEX document model,
in which a document is just a series of pages. Ω then be-
comes usable for typesetting small pieces of text at a time,
say to generate EPS files on-demand for the uses of other
applications, such as online multilingual mapping tools or
air traffic control systems.

For a piece of software to survive from one gener-
ation to the next, it must be able to adapt to the arising
needs of coming times, and continually provide new pos-
sibilities. We believe that the approach presented here
will ensure the long-term viability of Ω, hence of the
TEX community.

References

[1] Donald Knuth. Computers and Typesetting. 5 vol-
umes, Addison-Wesley, 1986.

[2] Omega Typesetting and Document Processing Sys-
tem, http://omega.enstb.org

[3] John Plaice, Yannis Haralambous and Chris Row-
ley. A multidimensional approach to typesetting.
TUGboat 24(1), 2003, Proceedings of the TUG
Annual Meeting, pp. 105–114.

[4] John Plaice and Joey Paquet. Introduction to inten-
sional programming. In Intensional Programming I,
World-Scientific, Singapore, 1996.

[5] John Plaice, Paul Swoboda and Ammar Alammar.
Building intensional communities using shared con-
texts. InDistributed Communities on theWeb, LNCS
1830:55–64, Springer-Verlag, 2000.

[6] John Plaice and William W. Wadge. A new ap-
proach to version control. IEEE-TSE 19(3):268–
276, 1993.

[7] Paul Swoboda.AFormalization and Implementation
of Distributed Intensional Programming. PhD thesis,
University of New South Wales, Sydney, Australia,
2003.

[8] Extensible Markup Language (XML), http://

www.w3c.org/XML

[9] Neomega Typesetting System. http://neomega.
web.cse.unsw.edu.au.

518 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

