
TUGboat, Volume 21 (2000), No. 2 129

Software & Tools

Even more MetaFun with METAPOST:
A request for permission

Alexander Berdnikov, Hans Hagen,
Taco Hoekwater and Bogus$law Jackowski

Introduction

In May 2000, at the Bachotek conference in Poland,
an evening session was organized on extending
METAPOST. It’s out of love for this program, not
out of frustration, that we discussed this topic,
and Bachotek provided the right ambiance. For
the record: some more people were present at the
meeting than the four of us.

1 Accuracy

There are two limitations that sometimes conflict
with our requirements. First, there is an upper
bound of 4K bp, which can be raised to 32K by
disabling a warning, but then some internal interme-
diate results can fail. The upper bound is not a real
limitation in METAFONT, since normally (type 1)
fonts are designed on a 1000 times 1000 bp grid.
However, in the area where METAPOST is used, this
limitation can hurt.

130 TUGboat, Volume 21 (2000), No. 2

The second limitation concerns the accuracy.
There are situations where one expects (for in-
stance) two points to be the same, but when they
are calculated in a different way, they slightly differ.

2 Unfill

Instead of implementing an unfill as “fill with
white”, a real unfill operator should be available.
Such a mechanism can probably be combined with
the weighted paths mentioned below.

3 Picture operations

In METAPOST a picture is a collection of paths,
drawn or filled, using some color and a certain pen.
The full range of operations available in METAFONT

should also apply to METAPOST: shift, scale, rotate,
add, subtract, etc.

4 Weighted paths

Where in METAFONT a path can have a weight,
in METAPOST only a color can be applied. In
addition to color, a weight should be available, and
METAPOST should be capable of dealing with them
in a similar way. If needed, a bitmap model, like the
one available in METAFONT, should be available in
parallel (for calculations, etc.).

5 Intersections

Calculating the intersection points of two paths
should be implemented in the core system and not
in macros. In a similar way it should be possible
to reduce overlapping and self-overlapping contours
into elementary ones. Although difficult border
cases are very hard to solve, METAPOST should be
capable of handling cases of average complexity.

6 Pens

Circular and elliptical pens should be re-imple-
mented in a different way. Currently these pens are
reduced to drawing a path with a certain thickness,
if needed combined with a PostScript transforma-
tion. Instead of drawing, the effective path should
be a filled combination of Bezier curves. The user
should be able to specify the accuracy as well as
methods, such as: try to approximate the resulting
contour as well as possible, keep the approximation
inside the contour, or keep it outside.

7 Fonts

Although METAPOST provides a way to embed text
typeset by TEX, and therefore gives access to the full
TEX machinery, it would be nice if the more raw text
processing would also honor ligatures and kerning.

The code that is needed can be derived from other
programs in the TEX suite.

8 Specials

Specials should be re-implemented and become path
or point specific in order to achieve special effects.

Conclusion

We are aware of the fact that the schedule of the
author of METAPOST, John Hobby, does not permit
him to implement these extensions, so we are pleased
to hear that he is willing to grant us permission not
only to explore these extensions, but also to realize
them, and that he is willing to participate in the
process of extending METAPOST.

Since we know that stability as well as com-
patibility are big issues in the TEX community, we
are very well aware how delicate the process is of
merging extensions as proposed by us and John
himself into the existing program. We will do our
best to make sure that the burden of merging code
will be minimized. And, most of all, we will try not
to spoil the beauty of the existing code.

We love METAPOST too much to compete, but
we long to complete.

� Alexander Berdnikov
Institute of Analytical
Instrumentation

St. Petersburg, Russia
berd@ianin.spb.su

� Hans Hagen
PRAGMA ADE
Ridderstraat 27
8061 GH Hasselt, The Netherlands
pragma@wxs.nl

� Taco Hoekwater
Kluwer Academic Publishers
Achterom 119
3311KB Dordrecht, The
Netherlands

taco.hoekwater@wkap.nl

� Bogus/law Jackowski
BOP sc.
ul. Piastowska 70
80-331 Gdańsk Oliwa, Poland
b.jackowski@gust.org.pl

TUGboat, Volume 21 (2000), No. 2 131

Extending METAPOST:
Response to “Even more MetaFun”

John D. Hobby

Introduction

I agree that METAPOST could use some improve-
ments and bug fixes, but I have been too busy
to do any of this work during the last two years
or so and I do not expect that situation to im-
prove soon. It is OK with me if others want to
make upward-compatible improvements to mp.web,
but such implementors should know enough about
the program to be able to go through the “The
command codes” section of mp.web and be familiar
with everything it refers to. To avoid competing
versions, extensions should probably be sent to me
(hobby@research.bell-labs.com) for inclusion in
the master version.

9 Accuracy

It would improve the METAPOST language to switch
from 32-bit scaled integers to 64-bit floating point
but this would be a lot of work and it would have
to be done very carefully. The scale factors of 216

and 228 could be retained, but it would still be
necessary to go through the entire program changing
numerical constants and looking for places where the
new arithmetic violates hidden assumptions. The
code for solving linear equations is especially likely
to need attention.

Another concern is how to ensure that META-
POST continues to give the same numerical results
in all implementations. It is may be safe to assume
64-bit IEEE standard floating point is now available
on all systems, but some compilers use a higher
precision for intermediate results and it would be
necessary to defeat that somehow. There is also the
concern that mp.web is technically a Pascal program
and not all installations are based on Pascal-to-C
translation.

I considered all these issues when I implemented
the graph package, and I decided that it was a lot
easier to design the graph macros around META-
POST’s mlog and mexp operators.

10 Unfill and weighted paths

The current implementation keeps track of the
painting order for the basic components of a picture
but does not try determine exactly which parts
overlap. Unfill may be easier than allowing weighted
paths with add and subtract, but implementing all
these features together would require an ability to
keep track of a picture as a spline-bounded planar

subdivision. This would require sophisticated al-
gorithms and data structures, and geometric algo-
rithms of this type are famous for being extremely
difficult to implement robustly. Also, it is not clear
how to make fonts fit into this model.

It would be very tricky to make the new fea-
tures upward compatible. In “Drawing Graphs
with METAPOST” (CSTR 164), I describe a for
. . . within iteration that allows one to pick apart
a picture and see all its basic components in the
painting order. This is fundamental to the graph.mp
macros and would be very hard to reconcile with new
features such as add, subtract and cull.

11 Bitmaps

The request for a bitmap model like the one available
in METAFONT is quite natural, provided that it is
somehow generalized to handle color. A basic design
would not be too hard to implement unless there is
to be an operator that takes a picture and converts
it into a bitmap as the PostScript interpreter would.

12 Intersections

There could certainly be a primitive that attempts
to find all the intersections between two paths in-
stead of just a single intersection point. If the op-
erator is to take two paths, intersect their interiors,
and return a path that describes this region, paths
would have to be generalized to allow multiple non-
contiguous outlines. One way to do this would in-
volve a new type of path join operator that behaves
syntactically like -- or ..., takes one unit of “time”
along the path, and means that there is a gap in the
path. It would also be necessary to generalize fill
to accept non-closed paths.

13 Pens

The main advantages of the current treatment of
circular and elliptical pens are that it is robust and
generates simple PostScript. The main disadvan-
tage I am aware of is that elliptical pens interact
poorly with dashed lines. The present scheme also
makes it hard to convert METAPOST output into a
Type 1 font, but that is not METAPOST’s intended
application.

I think it would be a mistake to make all pen
operations outline-based. Outline-based pens could
be provided as an alternative, but this would not
be easy to implement. Polygonal pens are easier to
express in terms of outlines, but the implementation
was a lot of work and it still has known bugs.

132 TUGboat, Volume 21 (2000), No. 2

14 Specials

The METAPOST language already has a very sim-
ple special mechanism and any improvements will
have to be upward compatible. Perhaps a different
key word is needed.

15 Fonts

I agree that it would be nice to have METAPOST’s
primitives handle ligatures and kerning.

16 Other features

There has been some demand for other features that
would not be too hard to implement.
• Make dash patterns work with polygonal pens.
• Add operators to determine whether a point is

“inside” a path or what its winding number
is with respect to the path. Is some point
“painted” by a given picture, and if so what
color?

• Add an operator for the area “inside” a path
and the total area affected by a picture.

• Allow shipout to an arbitrary file, not just the
job name with a numeric extension.

• Have a settex command that takes a string
expression and uses it to decide what version
of TEXto use for btex . . . etex. It would have
to occur before the first btex and it should be
restrictive enough not to be a security risk.

Conclusion

Some of the new features I have discussed would
be easy to implement, and many of the others would
be nice to have if someone can find the time to
implement them properly. However, I am inclined
to think that it would be a mistake to do outline-
based versions of elliptical pens or to add weighted
paths with add and subtract. Care should be taken
to make any additional features work reliably and
fit in with the rest of the language.

� John D. Hobby
Bell Laboratories
Room 2C-458
700 Mountain Ave.
Murray Hill, NJ 07974-0636
hobby@research.bell-labs.com

