
Pascal pretty-printing:

an example of "preprocessing w i t h TEX"

Jean-luc Doumont
JL Consulting, Watertorenlaan 28, B-1930 Zaventem, Belgium
j . doumont@i eee. org

Abstract

Pretty-printing a piece of Pascal code with TEX is often done via an external

preprocessor. Actually, the job can be done entirely in TEX; this paper introduces

PPP, a Pascal pretty-printer environment that allows you to typeset Pascal code
by simply typing \Pascal {Pascal code) \endpascal. The same approach of
"preprocessing w i t h TEX" - namely two-token tail-recursion around a \FIND-like

macro - can be applied easily and successfully to numerous other situations.

Introduction This solution is portable (it can run wherever TEX

A pretty-printed piece of computer code is a st&-
ing example of how the typeset form can reveal the

contents of a document. Because the contents are
rigorously structured, an equally rigorous typeset
form helps the reader understand the logic behind

the code, recognize constructs that are similar,

and differentiate those that are not. Not surpris-
ingly, many programming environments nowadays
provide programmers with a pretty-printed repre-

sentation of the code they are working on. In the
typesetting world, TEX seems an obvious candidate

for a pretty-printing environment, thanks to its
programming capabilities and its focus on logical -

rather than visual - design.

The current standard for typesetting Pascal
code with TEX seems to be TGRIND, a preprocessor
running under UNIX. Useful as it may be, TGRIND

also has limitations. While it can recognize reserved

words, it does little to reflect logical content with
indentation. In fact, it indents by replacing spaces in

the original file by fixed \ h s k i p's. Of course, it can

be used on the result produced by an ASCII-oriented
pretty-printer, which generates the right number of

spaces according to logical contents.

Alternatives to TGRIND are either to develop
a dedicated preprocessor - a computer program

that takes a piece of Pascal code as input and
produces a TEX source He as output-or to do

the equivalent of the preprocessing work within
TEX. The first solution is likely to be faster, hence
more convenient for long listings, but requires an

intermehate step and is less portable. The second,

by contrast, is rather slow, but also quite convenient:
pieces of Pascal code can be inserted (\input) as is
in a TEX document, or written directly within TEX.

m s) , requires no intermediate step (it does its j i b
whenever the document is typeset), and, like other

sets of macros, can be fine-tuned or customized to
personal preferences while maintaining good logical

design.
This article describes briefly the main features

and underlying principles of PPP, a Pascal pretty-

printing environment that was developed for type-
setting (short) pieces of Pascal code in engineering

textbooks. It then discusses how to use the same

principles of "preprocessing withn TEX" to quickly
build other sets of macros that gobble up characters

and replace them with other tokens, to be further

processed by TEX. The complete PPP macro package
will soon be found on the CTAN archives.

Of course, there are other ways of tackling the
issue, with either a broader or a narrower scope.
Structured software documentation at large can ben-
efit from the literate programming approach and
corresponding tools, with TEX or fiT~X as a format-
ter - a discussion beyond the scope of this paper.
Occasional short pieces of code, on the other hand,
can also be typeset verbatim or with a few ad hoc

macros, for example a simple tabbing environment,
as shown by Don Knuth (1984, page 234). For
additional references, see also the compilation work
of Piet van Oostrum (1991).

Main features of macros

Basic use. PPP works transparently; you do not need
to know much to run it. After \i nputing the macros

in your source, all you do is write

\Pascal
(Pascal code)
\endpascal

302 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pascal pretty-printing

in p la in . t ex or

\begi n{Pascal }
(Pascal code)
\end{Pascal }

in LATEX, where (Pascal code) can be an \ input

command.

The PPP package then pretty-prints the corre-

sponding Pascal code; by default, it

typesets reserved words in boldface;

indents the structure according to syntax (iden-
tifying such constructs as begin . . . end and if

. . . then.. . else . . .;);
typesets string literals in monospaced (\tt)
font;

considers comments to be TEX code and type-

sets them accordingly.

The Appendix illustrates these features.

Customization. PPP is de&cated to Pascal. Though

you can use the same underlying principles (see next

section) in other contexts, you cannot easily modify

PPP to pretty-print very different programming lan-
guages. There is, however, room for customizing
the pretty-printing, and this at several levels.

At a high level, you can use the token reg-

isters \everypascal, \ everys t r i ng, as well as

\everycomment to add formatting commands to be
applied, respectively, to the entire Pascal code, to

the Pascal string literals, and to the Pascal com-
ments. If you want your whole Pascal code to be in

nine-point roman, for example, you can say

\everypascal {\ninerm
\basel i neski p=lOpt(etc.) }

If you would rather use '(' and ')' instead of '[' and

' I ' as TEX grouping delirniters in Pascal comments,

YOU can say
Comments. Recognizing comments as TEX code is \everycomment{\catcode'\(=l \catcode'\)=2}
particularly powerful: side by side with a rather

Similarly, if you wish to reproduce the comments
strict typeset design for the program itself, com-

verbatim rather than consider them as TEX code,
ments can be typeset with all of T@'s flexibility and

you can say
power. Besides for adding explanatory comments

\everycomment{\verbatimcomments}
to the program, t h s possibility can be used to
fine-tune the layout. Extra vertical space and page At an intermediate level, you can add reserved

breaks can be added in this way. Such comments words by d e h g a macro with the same name as

can even be made ynvisiblen, so no empty pair of the reserved word prefixed with p@. If you want

comment delimiters shows on the ~ a a e . the Pascal identifier f o o to be displayed in italics in - .,
Accessing TEX within comments suffers a no-

table exception, though. Pascal comments can be
delimited with braces, but Pascal compilers do not
match braces: the first opening brace opens the com-
ment and the first closing brace closes the comment,
irrespective of how many other opening braces are in
between. As a consequence, braces cannot be used
for delimiting TEX groups inside Pascal comments
(the result would not be legal Pascal code anymore).
Other TEX delirniters must be used; by default, PPP

uses the square brackets ' [' and '1 '.

Program fragments. PPP was taught the minimum

amount of Pascal syntax that allows it to typeset

Pascal code; it is thus not a syntax-checker. While

some syntax errors (such as a missing end) will
cause incorrect or unexpected output, some others

(such as unbalanced parentheses) will be happily

ignored.

However, the package was designed for insert-

ing illustrative pieces of code in textbooks, including
incomplete programs. PPP has facilities for handling

these, though it needs hints from the author as

to what parts are missing. These hints basically
consist in supplying -in a hidden form - the im-

portant missing elements, so PPP knows how many

groups to open and can then close them properly.

your code, you can say

\def\p@foo{{\i t fool}

before your code and PPP will do the rest.

At a low level, you can go and change anything

you want, providing you know what you are doing
and you first save PPP under a different name.

Underlying principles

The PPP environment pretty-prints the code in one

pass: it reads the tokens, recognizes reserved words

and constructs, and typesets the code accordingly,
indenting the commands according to depth of

grouping. Specifically, PPP

relies on tail-recursion to read a list of tokens:
one main command reads one or several to-

kens, processes them, then calls itself again

to read and process subsequent tokens until it

encounters a stop token;

decides what to do for each token using a mod-
ified version of Jonathan Fine's \ F I N D macro;

recognizes words as reserved by checking for
the existence of a TEX command with the

corresponding name and acts upon reserved

words by executing this command;

TUGboat, Volume 1 5 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jean-luc Doumont

typesets the code by building a nested group
structure in TEX that matches the group stmc-

ture in Pascal.

Tail-recursion. Jonathan Fine (1993) offers useful

control macros for reading and modifying a string

of tokens. Rewritten with a ' ;' instead of a '*' (to
follow the Pascal syntax for a case), hls example
for marking up vowels in boldface, a problem

introduced in Einfiihrung in T# by Norbert Schwarz

(1987), becomes:

1
\FIND # 1

\end : ;
aeiou AEIOU:{\bf#l}\markvowels;
#1: {#l}\markvowel s ;

\END

1

so that \markvowel s Audacious \end produces
"Audacious". \FIND is a variable delimiter macro

(as Fine puts it), defined as

\l ong\def\FIND #I {%
\long\def\next##l#l##2:##3;##4\END{##3}%
\next}

It extracts what is between the ':' and the ';'

immediately following the first visible instance of
#1 and discards whatever is before and whatever is

after (up to the following \END). The same idea is
used in the Dirty Tricks section of the The T m o o k

(Knuth 1984, page 375). The generic use of \F IND

is thus

\FIND (search token)
(key) (key) . . . (key) : (action) ;
(key) (key) . . . (key) : (action) ;
. . .
(key) (key) . . . (key) : (action) ;
(search token) : (default action) ;

\END

PPP brings the following three basic changes to

Fine's scheme:

first, it uses a tail-recursion scheme that reads

tokens two by two rather than one by one; this

extension makes it easier to recognize and treat

character pairs such as I > = ' , ' . . ', and I (* ' .

next, it moves the tail-recursion command (the

equivalent of \markvowels in the example
above) to the end of the macro, to avoid having

to repeat it for each entry in the \FIND list. This
move also simplifies brace worries: whatever

is specified between the ' :' and the ' ;' in the

above defht ion can now be enclosed in braces.

These protect a potential #1 in the (action)
(they make it invisible when \next scans its

argument list), but do not produce an extra

level of grouping (they are stripped off when

\next reads its argument #3).

finally, it replaces ' : ' and ' ; ' -which need to be

recognized explicitly when reading the Pascal
code-respectively by I?' and '!'-which do

not. (Other tricks are possible; see for example

Sections 4 and 6 in Fine (1993).)

To consider all pairs of tokens, the new scheme

spits out the second token before calling the re-

cursive command again, so this second token is
read as the first token of the new pair. While

thls double-token system has proved very conve-
nient in many applications I developed, it has one

inherent limitation: because the spit-out character
has been into TEX'S mouth, it has already been

tokenized (assigned a character code). If the action

corresponding to the first token read is to redefine
character codes, then the second token will not

reflect these new codes. When such a recoding is an
issue, alternative constructs using \ f u t u r e l e t can

be devised to consider pairs (i.e., to take the next

token into account in deciding what to do), but such

constructs are rather heavy.
With these changes, the tail-recursion core of

the Pascal pretty-printer looks something like this:

\l ong\def\Fi nd #1{
\long\def\next##l#l##2?##3!##4\END{##3}
\next}

\def\Pascal {\pascal \ re lax}
% \ re lax i s passed as f i r s t token
% i n case the code i s empty
% i . e . , the next token i s \endpascal

\def\pascal#l#2{\def\thepascal{\pascal}%
\Find # 1

(k e y) (k e y) . . . (key)?{(action) } !
(k e y) (key) . . . (key) ?{(action) } !
. . .
(key) (key) . . . (key) ? (action) } !
#I?{ (default action) } !

\END
\i fx\endPascal#2

\def\thepascal ## l { \ r e l ax} \ f i
\thepascal#2}

with the typesetting taking the form

\Pascal (Pascal code) \endpascal

In this two-token scheme, the end-of-sequence test

must now be done on the second token read, so

the tad recursion does not read past the end-of-
sequence token (\endpascal). The sequence is

ended by redefining \thepascal to gobble the next

token and do nothmg else.

Hrnrn . . . i t is a l itt le more complicated than

that. The \pascal macro (which is really called

\p@sc@l) must be able to recognize and act upon

304 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pascal pretty-printing

braces, used as comment delimiters in Pascal. These The actions to perform when a reserved word
braces are recatcoded to the category other by say- has been identified depend of course on the word,
ing \catcode6\{=12 \catcode'\}=12 somewhere but are within a small set, namely
in \Pascal, so they lose their grouping power when

TEX scans Pascal code. Because the \ F I N D macro
typesetting the word as a reserved word, possi-

identifies tokens, category codes must match. In bly with space before or after;

other words, '{' and '1' must be of category 1 2 when opening a group and increasing the indentation;

\p@sc@l is defined, so we must use another pair of closing a group, thus going back to the level

characters as group delimiters for defining \p@sc@l . of indentation present when that group was
I use the square brackets ' [' and '1 '. opened; or

Accumulating words. Identifiers in Pascal are com-

posed of letters, hgits, and the underscore character
I-', but must start with a letter. Correspondingly,
PPP identifies words in the following way. It uses
an \ i fword switch to indicate whether a word is

currently constructed and an \if r e se rved switch

to indcate whether the accumulated word is a can-
didate reserved word. Starting on a situation in
which \i fword is false, it does the following:

if the token read is a letter, set \ i fword and

\ i f r e se rved to true, empty the token register

\word, and accumulate the letter in it.
if the token read is a digit, look at \i fword. If

true, accumulate the digit in the token register

\word and set \ i f r e s e r v e d to false (reserved

words contain no digit); if false, treat as a
number.

if the token read is an underscore, look at

\i fword. If true, accumulate the underscore in
the token register \word and set \i f r e se rved

to false (reserved words contain no underscore);
if false, treat as an underscore.

if the token is not a letter, a digit, or an
underscore, look at \ i fword. If true, set to
false and take care of the word so terminated.
If false, pass token to other macro for further

processing.

Recognizing reserved words. PPP recognizes re-
served words by checking words composed of let-

ters only against a list. T h s list is in reality a set of

macros, the names of whch are formed by prefwng

Pascal reserved words with 'pe'. These macros have
thus a double role:

by their existence, they identify a word as re-

served; for example, the existence of a macro

named pebegin indicates that begin is a re-
served word.

by their defimtion, they tell what to do when

the corresponding reserved word has been
identified; for example, \p@begi n takes care of

what needs to be done when the reserved word
begin is encountered.

turning flags on or off.

Because many reserved words require the same
action, the corresponding TEX macros can all be

\ l e t equal to the same generic macro. For example,

\ r @ s e r v simply typesets the last reserved word
accumulated (without extra space), so reserved

words like string or nil can be taken care of simply

by saying
\ l e t \p@st r i ng=\r@serv
\l et\p@ni l=\r@serv

Grouping and indenting. PPP manages the levels

of indentation by creating a nested group structure
that matches the structure of the program. A begin,

for example, opens a group and increments the

indentation by one unit within the group; an end

closes the group, thus returning to the level of
indentation in effect before the group was opened.

Of course, grouping is not always that simple.

All the declarations that follow a var, for example,
should be withn an indented group, but there is no

reserved word to mark the end of the group. Such
cases are treated by setting a flag to true, to indicate

that a group without terminator is open. The next

of a subset of reserved words can then close that
group before performing its own task.

Other examples of "preprocessing"

A tail-recursion engine based on a \FIND-like macro

does pretty much what one would expect a pre-
processor to do: it gobbles the characters one by

one and replaces them with other, possibly very

different tokens. This similarity is what leads me to
refer to such a scheme as "preprocessing within TEX"

(though, strictly spealung, this is a contradiction in

terms).

The one-token examples presented in Fine

(1993) are the simplest case of this preprocess-
ing: decisions are taken each time on the basis of

a single token. Such a scheme is simple, straight-

forward, and sufficient in many applications. And
when following tokens must be taken into account,

it can be extended with \ fu ture le t constructs,

though these quickly become quite heavy. For

TUGboat, Volume 15 (19941, No. 3 -Proceedings of the 1994 Annual Meeting 305

Jean-luc Doumont

example, the \markvowel s macro can be modified

in the following way to mark, say, "i before e"
combinations:

\def\spellcheck#l{%
\FIND #1

\end: ;
i : \ i e ;
#l:{#l}\spellcheck;

\END}

so that typing

{\obeyspaces
\spell check I receive a piece of pie\end}

yields "I receive a piece of pie".

The two-token example presented in this paper

is a convenient extension of the scheme. True, it
has as inherent limitation that the second parameter

is tokenized (assigned a character code) one step

earlier than it would in the one-token case. On the
other hand, the corresponding code is particularly

readable (thus easy to program and easy to main-
tain). The above example becomes, with a two-token

model,

\def\check#l#2{\def\nextcheck{\check}%
\F IND #1

i : {\FIND #2
e : {{\bf i e}\gobbl eone} ;
#2:{i};

\END} ;
#I: {#I} ;

\END

\def\gobbleone{\def\nextcheck##l%
{\check \relax}}

\def\spell check{\check \re1 ax}

where \gobbleone gobbles the next token and
replaces it with \re1 ax. The nested \FIND structure

makes it easy to see the underlying idea of "once

you know the first letter is an i, see whether the

second is a n el'. Clearly, the mechanism can be
extended t o take into account three, four, or even

more tokens at the same time, with lirmtations and
advantages similar to those in the two-token case.

Two-token tail-recursion can also be achieved
with other constructs, for example Kees van der
Laan's \ f i fo macro. In van der Laan (1993) he
underlines the importance of the separation of con-

cerns: going through the list is separated from
processing each element of the list. This elegant
programming principle is sometimes hard to achieve
in practice: in the case of string literals, for example,
\Pascal reacts to a single quote by interrupting
token-by-token progression and reading all tokens
to the next single quote -progressing and process-
ing are thus closely linked. For the "i before e"
example, the separation is clearer and the use of
the \FIND structure for processing the elements is
largely unchanged:

\def\f i fo#l#2{\check#1#2%
\i f x\of i f#2\0f i f \f i \f i f 0#2}

\def\of i f#l\of i f {\f i }

\newi f \ i fgobbl eone

\def\check#l#Z{\i f gobbl eone
\gobbl eonefal se
\else
\ F I N D #1

i:{\FIND #2
'e: {{\bf i e}\gobbleonetrue} ;
#2:{i};

\END} ;
#I: {#I} ;

\END

\fi l

I have used the two-token scheme successfully

in a variety of situations. For the same engineering

textbook format, I devised an elementary chemistry
mode, so that

\chem CH4+202oCOZ+ZHZO \endchem

yields

CH4 + 202 = C02 + 2H20,

and a unit mode, so that

\unit 6.672,59e-11 m3.kg-l\endunit

yields the IS0 representation

Actually, mentioning that the \FIND-like tail-
recursion applies to tokens is not entirely correct.
Because it reads arguments, it will also gobble up
as one object a group delimited by braces (or by
the current Tj$ delimiters), not a single token. This
case cannot happen with the \Pascal macro, for
there are no current group delimiters during tail-
recursion ('{' and '}' are given category code 12), but
it can happen in other situations. When a group is
read as argument #1 by \check, the first level of
grouping is removed, so the \FIND selection is actu-
ally performed on the first token (or group) within
the original group. Whether this characteristic is a

306 TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Pascal pretty-printing

feature or a bug depends on your application. Some- It may not be the fastest piece of TEX code in the
times, it is quite useful: for the chemistry mode world (and some would doubtlessly qualify it as
above, it enables \chem C{6O}H{60}\endchem to "syntactic sugar"), but it made optimal use of my
give the correct output CsoHso, with the \FIND rec- time, by allowing me to get the job done fast and
ognizing the '6', but acting on the group 60; by well.
contrast, \chem C60H60\endchem yields the incor-

rect CsoHso, with the '0' being a subscript to an

empty subformula and hence being too far away Bibliography
from the '6'. Sometimes, however, you may prefer

Fine, Jonathan, "The \CASE and \FIND macros."
strict token-per-token processing; in the FIFO paper

mentioned above, Kees van der Laan shows a way of
TUGboat 14 (I), pages 35-39, 1993.

acting on each token by assigning it to a temporary Knuth, Donald E., The Tmook . Reading, Mass.:

variable instead of reading it as an argument. Addison-Wesley, 1984.

Laan, C.G. van der, "\FIFO and \LIFO sing the

Conclusion

Preprocessing within TEX-reading a list of tokens

(or brace-delimited groups) and replacing them with

others for TEX to process further-has unlimited
applications for TEX users and macro-writers. A

processing based on a \FIND macro (Fine, 1993) is
powerful, especially when nested and applied on

two tokens. The progression along the list can be

built in the same macro or can be separated, for
example using the \fi f o macro (van der Laan 1993).

The approach is powerful enough to handle such

tasks as pretty-printing of Pascal code fragments.
Maybe the main advantage of these prepro-

cessing schemes is that they are fast and easy to

implement. They are not reserved to large-scope ap-
plication, but can be used for one-off, ad hoc macros

as well. I once had to typeset phone numbers on

the basis of the following syntax: the code

\phone{725.83.64}

should yield 725 83 64, that is, periods must be
replaced by thin spaces and pairs of digits must be

slightly kerned (it looked better for the particular

font at that particular size). The corresponding
tail-recursion scheme is easy to implement:

\def\k@rn#l#2{\let\thek@rn=\k@rn
\FIND #1

0123456789:{#1%
\FIND #2

0123456789:{\kern-0.0833em};
#2 : {\re1 ax} ;

\END} ;
. : {\thi nspace} ;
#l: {#l} ;

\END
\i fx\end#2\def\thek@rn##l{\rel ax}\f i
\thek@rn#2}

BLUes." TUGboat 14 (I) , pages 54-60, 1993.

Laan, C. G. van der, "Syntactic sugar." TUGboat 14

(3), pages 310-318, 1993.
Oostrum, Piet van, "Program text generation with

TEX/LATEX." MAPS91.1, pages 99-105, 1991.

Schwarz, Norbert, E i n f u h n g in Tfl. Addison-Wes-
ley, Europe, 1987. Also available as Introduction

to T@. Reading, Mass.: Addison-Wesley, 1989.

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

Jean-luc Dournont

Appendix: example of use

(The following program may not be particularly
representative of code fragments inserted in a

textbook with the PPP package, but it has been
designed to illustrate as many features of the

\Pascal environment as possible.)

Program demo;
const pi=3.141592 ;
type date=record year: i n tege r ;
month:1..12; day:1..3l;end;
f 1 ags=packed ar ray [O . .7] o f boo1 ean ;
var MyDate:date; MyF1ags:flags;
i l , i 2 : i n t e g e r ;
last-words : s t r i ng [31] ;

f unc t i on f a c t o r i a l (n: integer) : in teger ;
begin
i f n<=l then f a c t o r i a l :=1
e lse f a c t o r i a1 :=n* fac tor i a1 (n-1) ;
end ;
(\i n v i s i b l e\vadjust [\medski p [\ i t
\langlemore code here$\rangl e$] \medski p] }

f u n c t i o n Days-in-month(theDate:date);
begin
case theDate.month o f l:Days_in_Month:=31;
2 :w i t h theDate
do (check i f leap year} begin
i f (O=(year mod 4))

then Days-i n-Month: =29 else
Days_inJonth:=28;end;
3:Days_in_Month:=31; (\ i n v i s i b l e
\vadjust[\hbox[\hskip8em\vdots]]}
12:Days_in_Month:=31;
end :

begin
last-words:='ThatMs a l l , f o l k s ' ;
end.{Et vo i l \ 'a \ th inspace! }

program demo;

const

pi = 3.141592;

type
date = record

year: integer;

month: 1..12;
day: 1..31;

end;

flags = packed array[0..7] of boolean;
var

MyDate: date;

MyFlags: flags;
i l , i2: integer;

last-words: string[3 11;

function factorial(n: integer): integer;

begin
i f n < = l t h e n

factorial := 1

else
factorial := n * factorial(n - 1);

end;

(more code here)

function Days-in-month(theDate: date);
begin

case theDate.month of
1:

Days-in-Month := 3 1;
2:

with theDate do{check if leap year}

begin

if (0 = (year mod 4)) then
Days-in-Month := 29

else
Days-in-Month := 28;

end;

3 :
Days-in-Month := 31;

12:

Days-in-Month := 3 1;

end;

begin
last-words := 'That ' ' s a1 1 , f o l ks';

end. { Et voila !}

TUGboat, Volume 15 (1994), No. 3 -Proceedings of the 1994 Annual Meeting

