
TUGboat, Volume 12 (1991), No. 2 

end 

/* Cleanup. */ 
' k ' t exauxf i l e  

'qqui t  ' 

/*  F i l e  the  answer f i l e .  */ 
'k ' answerf ilename 

' f i l e  ' 
/*  Move back t o  where we were when the  macro was c a l l e d .  */ 
'k ' f i l e i d . 1  

' s e t  po in t  . w  o f f '  

' l o ca t e  .z '  

' s e t  point  .z  o f f '  

' s e t  msgmode on' / *  Matches t he  "of f"  above. */  
'msg Answers appended t o  ' I  lanswerf i lenamell ' . '  

o Jim Hefferon 
Mathematics 
St. Michael's College 
Colchester, VT 05439 

BITnet: hef f eron@smcvax 

Oral 

Victor Eijkhout 

Tj$ knows two sorts of activity: those actions that 

can be classified under 'execution'. and those that 

fall under 'expansion'. The first class comprises ev- 

erything that  gives a typeset result, or that alters the 

internal state of m. Examples of this are control 

sequences such as \vskip, macro definitions, and all 

assignments. 

Expansion activities are those that are per- 

formed by what is called the mouth of m. The 

most obvious example is macro expansion, but the 

command \ the  and evaluation of conditionals are 

also examples. The full list can be found on pages 

212-215 of the =book [l]. 

In this article I will give two examples of com- 

plicated macros that function completely by expan- 

sion. Some fancy macro argument delimiting occurs. 

and there are lots of applications of various condi- 

tionals. For a better understanding of these I will 

start off with a short section on the expansion of 

conditionals. 

About conditionals 

For many purposes one may picture W ' s  condi- 

tionals as functioning like conditionals in any other 

programming language. Every once in a while, how- 

ever, it becomes apparent that = is a macro pro- 

cessor. absorbing a stream of tokens, and that con- 

ditionals consist of nothing more than just that: to- 

kens. 

Consider the following example: 

\def\bold#l{{\bf #I)) 

\def \ s lan t# l ( ( \ s l  #I)) 

\ ifsomething \bold \ e l s e  

\ s l a n t  \ f i  {word) 

If the 'something' condition is true, the whole 

\ i f  . . . \ e l s e  . . . \ f i  {word) sequence is not 

replaced by \bold {word); instead will start 

processing the 'true' part of the conditional. It ex- 

pands the \bold macro, and gives it the first token 

in the stream as argument. Thus the argument taken 

will be \e l se .  T)?J will only make a mental note that 

when it first encounters - more precisely: expands - 

an \ e l s e  it will skip everything up to and including 

the first \ f i l .  

The reader may enjoy figuring out why in spite 

of the apparent accident in this example the 'word' 

will still be bold, and why will report that 'end 

occurred inside a group at level 1' at the end of the 

job. 



TUGboat, Volume 12 (1991), No. 2 273 

For this sort of problem there are (at least) two 

solutions. One solution is: 

\ifsomething \let\next=\bold 

\else \let\next=\slant \fi 

\next Cword) 

Note that this uses more than just the mouth of 

7$X, because \let statements are executed, not ex- 

panded. 

Second solution: 

The \expandafter commands will let T@ find the 

delimiting tokens of the conditional before it starts 

expanding for instance \bold. When this command 

is finally expanded, the irrelevant parts of the con- 

ditional will have been removed. 

The reader may not see the point of this sec- 

ond solution at first, and indeed, the first solution 

is more natural in a sense. However, there is a very 

important advantage to the second. Primitive condi- 

tionals of are fully expanded, for instance inside 

an  \edef. Example: 

will expand to 

macro: -> \hskip . . . 

macro: -> \vskip . . . 
depending on the mode. If you are implementing a 

test that should function in a context where there is 

only expansion \let cannot be used. so a number of 

\expandaf ter commands will probably be needed. 

Application 1: string comparison 

Suppose we would like to have a macro that tests 

for equality of two strings, and it should be useable 

as if it were a conditional: 

A s i m ~ l e  construction exists for this: 

gives a, probably. somewhat unexpected result: 

! Undefined control sequence. 

\ifsamestring #l#2->\def \testa 
. . .  

Solutions using only expansion are possible, but 

they are more complicated. The reader may want to 

try solving this before looking at the solution below. 

Keep in mind that we want something that behaves 

like a conditional: the final result should be allowed 

to be followed by 

. . .  \else . . .  \fi 
The solution given here is not the only possible 

one: variations may exist. However, there is probably 

only one basic principle, which is to  compare the 

strings one character at a time. 

Here is the first part: 

\def \if samestring 

#1#2{\if allchars#l$\are#2$\same) 

The strings are terminated by a dollar character, 

which we suppose not to appear in the string. 

Next the routine \if allchars will be used re- 

cursively. At first it tests if either of the two strings 

has run out. If some incarnation of this routine finds 

that both strings are empty the initial strings must 

have been equal, if exactly one is empty the initial 

strings were of unequal length, thus unequal; if nei- 

ther is empty another routine should check if their 

leading characters are the same, and if so. do a re- 

cursive call to \if allchars to see if the rest is also 

the same. 

\def\ifallchars#l#2\are#3#4\same 

{\if#l$\if#3$\say{true)% 

\else \say{f alse)\f i 

\else \if#l#3\ifrest#2\same#4\else 

\sayCfalse)\fi\fi) 

The \say macro is something of a trick; we'll get 

to that. Let's first consider the last clause: the 

test \if #1#3 checks if the leading characters of the 

strings are equal; if so, the remainder should be 

tested for string equality. 

In the previous section I showed that a \fi is 

just a token standing in the input stream. Stand- 

ing behind the call to \ifrest there are two such 

\def\ifsamestring tokens, and somehow they are to be removed. Unfor- 

#1#2{\def \testa{#l)\def \testb{#2)% tunately the \expandaf t er method of the previous 

\if x\testa\testb) section cannot be used here, as there may be an in- 

definite number of tokens between the \ifrest and 
however, this suffers from the objection mentioned the tokens. 

above: it uses more than just the expansion per- One solution here is to let the final argument of 
formed in m ' s  mouth. Thus, the following call \ifrest be delimited by the whole closing sequence: 
\messagei\if samestring \def\ifrest#l\same#2\else#3\fi\fi 

{some)(other)yes\else no\fi!) {\fi\fi \ifallchars#l\are#2\same) 



TUGboat. Volume 12 (1991), No. 2 

A trick if ever there was one. When the \if#1#3 

test turns out false the \ifrest call is skipped, and 

the \f i\f i sequence delimits both conditionals that 

are open at that moment. When \if#1#3 is true. 

everything up to and including \f i\f i is scooped 

up as part of the parameter text. The delimiting 

\f i\f i sequence is not expanded in this process, so 

the conditionals must still be closed; this is done 

by the \f i\f i sequence with which the replacement 

text starts. Thus this construction effectively lifts 

the relevant part of the macro outside the bound- 

aries of the conditional. 

Now for the \say macro. What we want to ac- 

complish by it is this: the call \sayCtrue) should 

put the primitive \iftrue outside all conditionals 

that are active at the moment, and similarly for 

\say(f alse). The implementation of \say given 

here is not very general: it uses the fact that all three 

calls are nested two conditionals deep, and that the 

final boundary is the \f i\f i sequence. 

\def\say#l#2\fi\fi 

C\fi\fi\csname if#l\endcsname) 

All tokens in between the first argument of \say 

and the delimiting \f i\f i are lumped together in 

#2 and they are never used. The reason that \say 

is necessary at all, is that TEX would misinterpret 

the occurrence of \iftrue and \iff alse in clauses 

that are skipped. 

There is a. maybe somewhat surprising, second 

possible implementation of \say. Inside a \csname 

. . . \endcsname sequence all expandable tokens are 

expanded, and in particular \expandafter. This 

means that one may alter the state of the input 

stream after \endcsname by putting \expandafter 

directly in front of it. I leave it to the reader to figure 

out what are the exact mechanisms of this second 

implementation: 

\def\say#lC\csname if#l\expandafter 

\expandafter\expandafter\endcsname) 

Note that the calls to \say always occur directly in 

front of an  \else or a \f i. 

Once the reader understands this trick, the fol- 

lowing routine for alphabetical comparison of two 

strings will not present insurmountable problems. 

\let\xp=\expandaf ter 

\def \ifbef ore 

#l#2C\if allchars#l$\are#2$\bef ore) 

\def \if allchars#1#2\are#3#4\bef ore 

C\if#l$\sayItrue\xp~\else 

\if #3$\sayCf alse\xp\xp\xp)\else 

\ifnum1#l>'#3 \sayCfalse% 

\xp\xp\xp\xp\xp\xp\xp3\else 
\if rest#2\bef ore#4\f i\f i\f i) 

Lexicographic comparison is done here by numerical 

comparison of character codes. The \say macro now 

occurs on three different levels, so the number of 

\expandaf ter commands needed to remove various 

amounts of \else and \fi tokens is 1, 3, and 7. 

The first two clauses of the test take care of the case 

where strings are of different lengths. 

A comment about the principle underlying 

these macros. Every step replaces one \if. . . com- 

mand by another, until finally only \iftrue or 

\iff alse results. All the magic with \expandafter 

and delimiting with \fi is necessary, because we 

can't deliver these final conditionals as a result of 

other conditionals. However, we can let w de- 

liver some tokens that give a true or false test. 

The \if samestring test can for instance be imple- 

mented as2 

\def\saytrueiO=O ) \def\sayfalseiO=l ) 

\def\ifsamestring#1#2% 

C\ifnum \allchars#l$\are#2$\same) 

\def\allchars#l#2\are#3#4\same 

~\if#l$\if#3$\saytrue\else\sayfalse\fi 

\else \if#l#3\allchars#2\are#4\same 

\else\sayf alse 

\f i 
\f i 

> 
Now there is an outer \ifnum test, and Q$ will 

expand tokens after that test until two numbers and 

a relation remain. 

Application 2: implementing the Lisp 

backquote macro 

Coming (partly) from a Lisp programming back- 

ground, I can't help being reminded of the Lisp back- 

quote macro when using m ' s  \edef. The back- 

quote macro [2] is something like a reverse \edef: 

it expands nothing, unless you explicity order it to. 

And. relishing a good Q X  hack, I was wondering if 

I could write something like that in T@. The an- 

swer turned out to be: yes. But it wasn't particularly 

easy. 

Another incentive than sheer curiosity was the 

fact that, in a certain application, I was writing 

things like 

\edef\act{\noexpand\aC\noexpand\b 

This implementation was suggested to me by 

Marc van Leeuwen. 



TUGboat, Volume 12 (1991), No. 2 275 

{\noexpand\c\noexpand\d{\e)3)> 

\act 

and I was getting tired of typing all the \noexpand 

commands. I wanted to tell T)$: 'expand this', 

instead of having to point out everything that 

shouldn't be expanded. 

My solution to this problem takes the form of 

a 'backquoting definition' \bdef. which, by the way. 

defines only macros without parameters. The basic 

principle is to traverse the replacement text, to re- 

produce everything in it, but to expand everything 

that has \expand in front of it. 

The macro \bdef is just an \edef in disguise: 

it appends a terminator and installs a routine that 

will eat its way through the argument list. 

\def\bdef#I#2{\edef#l{\TakeItem#2\Stop)) 

As before, I save myself a lot of typing by putting 

\let\xp=\expandaf ter 

For this macro I wanted to allow conditionals to 

be part of the argument. This meant being careful: 

sequences such as 

\ifsomething #I \else #2 \fi 

are completely misunderstood by if either of the 

arguments is some \if . . . , \else, or \f i. Therefore 

I allowed macro arguments to appear only in the 

tests themselves, and outside conditionals. 

The first test is easy: if we have found the ter- 

minator we can stop. 

\def\TakeItem#l% 

{\ifx\Stop#l\xp\StopTesting \else 

\xp\GroupTest\fi #l\stop\Stop) 

\def\StopTesting#l\stop\StopI) 

\def\Stop{l)\def\stopCO) 

If not. we have now one argument. This can be a 

single token, or it can be a group that was enclosed 

in { .  . .). We have to test for this distinction. 

Note how the argument occurs only in the test. 

and is then reproduced outside the conditional for 

the benefit of the \GroupTest macro. The other 

macro. \StopTesting doesn't need the argument, 

so it has to  remove it. This slight overhead (also in 

most of the following macros) ensures that we will 

not have conditional tokens inside a conditional. 

Now the macro \GroupTest receives as argu- 

ment a string of tokens, delimited by \stop\Stop. 

If the argument of \TakeItem was a single token, 

\GroupTest will find \stop as its second argument, 

and it will invoke a routine that handles single to- 

kens; otherwise the argument of \TakeIt em must 

have been a group, and it will invoke a routine that 

handles groups. 

\def\GroupTest#l#2#3\Stop 

{\if x#2\stop \xp\TakeToken 

\else \xp\TakeGroup\fi #1#2#3\Stop) 

Single tokens can be \stop in which case the 

end of a group has been reached, and intake of tokens 

on this level can stop; otherwise it is a token that 

must be expanded or must be reproduced without 

expansion. 

\def\TakeToken#l\stop\Stop 

{\ifx#l\stop 

\xp\RemoveToken \else 

\xp\MaybeExpand \fi #I) 

\def\RemoveToken#l{)%get rid of a \stop 

Groups are handled by putting a left brace (re- 

call that braces around macro arguments are re- 

moved), tackling in succession all tokens of the 

group. putting a right brace, and continuing with 

the items after the group. 

\def\TakeGroup#l\Stop 

{\leftbrace\TakeItem#l\rightbrace 

\TakeItem) 

In between braces there is now a sequence delimited 

by \stop. 

The following macros yield a left and right brace 

respectively: 

\def\leftbrace{\iftrue{\else)\fi) 

\def\rightbrace{\iffalse{\else)\fi) 

which is based on the fact that the nesting structures 

of groups and conditionals are independent. 

Now for the single tokens. If the token is 

\expand we have to expand the token following it. 

otherwise we reproduce the token without expan- 

sion. 

\def\MaybeExpand#i{\ifx#l\expand 

\else \xp\id \fi #I) 

\def\id#1{\noexpand#1\TakeItem~ 

If parameter 1 is \expand we let it stand: this has 

the effect of applying the macro \expand (see below) 

to what follows. Otherwise we apply \id, which has 

the effect of simply reproducing its argument: how- 

ever, as we are still in the context of an \edef, this 

argument has to  be prefixed with \noexpand. 

Expansion of a token is a tricky activity. Merely 

reproducing a token will cause it to be fully ex- 

panded, as we are still inside an \edef. However, 

once we abandon control, we cannot get it back, so 

we will have to do all expansion ourselves. 

At first I had here 

\def\expand#l{\expandafter\TakeItem#l) 

which is in the spirit of the Lisp backquote macro. 

However. it will not expand completely the way it 

is done inside an \edef. The solution I found to 



TUGboat, Volume 12 (1991), No. 2 

this problem necessitated me to put a delimiter after 

the string to be expanded, instead of having it only 

prefixed. Tokens in between 

delimiters will be fully expanded. I don't believe so- 

lutions are possible without this closing delimiter. 

As \expandafter is the only mechanism by 

which the user can explicitly force expansion, I ar- 

rived at the following idea. If a token is to be ex- 

panded, store a copy for comparison, hit the original 

over the head with an \expandafter, see if it still 

moves (that is, if it is not equal to the comparison 

copy), and if so, repeat this algorithm. Crude but 

effective3. 

First the simple part: if we have found the clos- 

ing \endexpand delimiter. we remove it and go on 

absorbing tokens after it. 

\def\expand#lC\ifx#l\endexpand 

\xp\TakeFirst\xp\TakeItem 

\else \xp\fullexpand \fi #I) 

\def\endexpandC2)%just to have it defined 

Otherwise we compare the token to its expansion: 

Comparison can be done by \if x. which is able 

to handle both characters and control sequences. 

If the two parameters are the same we stop; oth- 

erwise we again \expand. Note that the call to  

\TakeFirst has the effect of removing the #I af- 

ter the conditional; the #2 is the expanded token. 

and it should be expanded further. 

Now that  we have all pieces together we can 

perform a small test: I put some conditionals in the 

test to make sure it would be hard. 

which gives 

Well . . . Cases like \ifnum . . . \ifnun . . . 
\f i\f i, where expansion of one token yields the 

same token, go wrong. 

> \tmp=macro : 
-> \a Cbc3\fi \iftrue \b (hjhjhj)z\else . 
and 

\countO=l 

\bdef\tmpC\aCbc)\fi\iffalse\b 

C\expand\aCfgHhj)\endexpand)z\else) 

\show\tmp 

which gives 

> \tmp=macro: 
-> \a Cbc)\f i \iff alse \b Cfgfg)z\else . 

The above implementation has a slight short- 

coming, as it cannot distinguish between a single 

token and that same token with braces around it4. 

Both 

\bdef \tmpi\aCb33 

and 

\bdef\tmpC\a b3 

give 

>\tmp=macro: 

-> \a b 

Of course, shortcoming or not, this whole section is 

of rather academic value: \bdef is so much slower 

than \edef in execution that I've reconciled myself 

with writing lots of \noexpand tokens. But I do hope 

that these farfetched examples give inspiration to 

macro writers. Because W ' s  mouth does lend itself 

to useful purposes [3,-4]. And to loads of fun. 

References 

Donald Knuth, The l&Xbook, Addison-Wesley 

Publishing Company, 1984. 

Guy L. Steele jr., Common Lisp, the language, 

Digital Press 1990. 

Alan Jeffrey, Lists in m ' s  mouth, TUGboat, 

11(1990), no. 2, 237-245. 

Sonja Maus, An expansion power lemma, TUG- 
boat, 12(1991), no. 2, 277. 

o Victor Eijkhout 
Center for Supercomputing 

Research and Development 
University of Illinois 
305 Talbot Laboratory 
104 South Wright Street 
Urbana, Illinois 61801-2932, USA 
eijkhout@csrd.uiuc.edu 

Also, it cannot cope with macros that expand 

to a space token or to nothing. The second objection 

can probably be repaired; the first is inherent to 

W ' s  parameter mechanism. 


