
TUGboat, Volume 10 (1989), No. 1 15

previous version.) What happens next depends on The Virtual Memory Management of
the chosen editor.

For TPU, a scratch file is created and the con-
Publ iC TEX

tents of any initialisation file copied to it. Com- Klaus Thull

mands are added to position the cursor at the place

where spotted the error. The scratch file is then
used as the TPU initialisation file. After exiting the

editor, this scratch file is deleted.

The process for EDT is similar: an initialisa-

tion file specified via TEX$EDIT-INIT is copied to a

scratch file which is used to initialise EDT. However.

it is not possible to position the cursor exactly at
the erroneous text automatically (EDT is somewhat

lacking in this respect), only to the right line. So the

command sequence GOLD M is defined, which can be

used to position the column correctly by hand.
Since both TPU and EDT are callable, but only

one can be used in a particular session, it is

obviously somewhat inefficient to have both per-

manently linked (they are both quite large). For-
tunately, both editors are implemented as sharable

images. This allows to determine which edi-
tor to use via TEX$EDIT, then load the appropriate

sharable image using the run-time library routine

LIB$FIND-IMAGE-SYMBOL before invoking the editor.
With the possible exception of LSE, which is

TPU-based but not available to the author, the other
DEC editors are not callable, and must be invoked,

as would a non-DEC editor, by spawning a DCL
command. Of the non-callable editors, only TECO

can position the cursor in its initialisation file. How-
ever, input to TECO is split into pages (i.e., TECO

makes a single pass through the file with a buffer

of finite capacity), so it is not wise to position the

cursor automatically. Instead, a macro is defined in
q-register '1' to perform the positioning.

Any other editor is executed with a fixed se-

quence of command line arguments, separated by
spaces: the file to be edited; the erroneous line;

the erroneous column; and the initialisation file (if
any). This allows a DCL procedure to be specified

as TEX$EDIT, permitting editor-specific processing.

For example, the trivial procedure for use with SOS
would be:

$ DEFINE/USER SYS$INPUT SYS$COMMAND:
$ sos 'P I '

The change file and editor-specific code

for T@C 2.95 can be obtained by contacting
the author at either alienQuk.ac.essex.ese or

alienQuk . ac . kc1 . ph . ipg. Both these addresses

are on JANET, the U.K. academic network. The
change file also features a large (>64K) memory,

to enable the production of F'IQ graphics and
halftone images.

Last summer in w e t e r , I promised a public
domain 'I)$ for the PC. At that time I had solved

the compiler related (arithmetic and idiosyncratic)

problems and had passed the trip test. For a

production version, capable of IP7&X, PICI'EX and

d ~ S - w . I still needed a Virtual Memory scheme
which was promised me at w e t e r but never

arrived. This I did then on my own. following some
advice from "The Art of Computer Programming."

tested it thoroughly, and completed a production
version last autumn. For a while now this "Public
TJQ? is up and running, and has passed some few

tests and productions.

This TFJ does pass the trip test, I am proud
to announce. On all accounts it is a fully developed

specimen, capable of heavy work, and has proven

reasonably stable. It can be configured with

full memory and font space since these two are
virtualized. The other table spaces must fit into
real memory but even under Novel1 conditions which

leave ca. 450-500kB this seems to be sufficient for

generous sizes. The setting I use now has grown out

of some experimenting with large runs in narrow
conditions. Some of those large runs have been
done with the new PubliC TEX.

As yet, this TFJ is still slow. Its speed is
ca. one fourth of that of its big commercial brother.

On a lOMHz NCR AT-Compatible, it takes about

20 seconds for a plain page, and 30 for a I 4 w

page.
This 7&X does not need the co-processor any-

more. Since TURBOPASCAL'S emulation knows only

a 6-byte real datatype, some hand-coded conversion

is used for float and unj-loat.

is accompanied by the complete m w a r e

and the complete GF- and PK-ware. MFT and META-

FONT are still missing but I am working at that.

I won't do anything about PXL-ware, yet I intend

to do a P K ~ O C H / C H ~ O P K pair in order to have some

font editing facility.

The entire sources are publicly available at
LISTSERV@DHDURZl.BITNET.

T h e Compiler: The compiler of my choice was

Borland's TURBOPASCAL when version 4 was an-
nounced. This was the version introducing large
memory model. multi-module compilation and 32-

bit integers.
For once, I experienced a p compiler which

deserves the name (but then, I am a spoiled

TUGboat, Volume 10 (1989), No. 1

mainframe user). Where I do not have to wait many

hours for a compilation. In fact, I have to wait 5

minutes of which 4 are TANGLE time. Where I didn't

have to spend several weeks only to trace down
compiler bugs. Where 110, type conversion and
arithmetic behavior is handled somewhat sensibly.

Where code generated is decently small. W ' s size
is about 180k. Imagine my tears.

Of course, there are idiosyncrasies, and one

(maybe-)bug. There was, of course, line-break's
standard feature turning looseness of -2 into 65534

which is displayed by every 16bit compiler. There
was one new casting bug in tangle which spoiled
try-break. Some more things like that.

Nevertheless, this compiler has passed its 'I'EX
test with all jets flaming, I think. A thousand

thanks to its makers.

Virtual Memory w: mem and font-info are

the two tables virtualized. These two are the

largest, and-alas-the ones accessed most, I sus-
pect. I chose to devise a swapper governing one

real memory page pool to serve both tables. This
scheme might be extended to include other tables
one day. Next on the list are INITEX'S hyphenation

generator tables since for I N I W conditions do get
narrow.

For testing memory access, I had an early,
small, pre-VM version of TEX, sufficient for WEBS,

output a memory access log for mem and font-znfo.
Then I took a couple of 10-20 page web logs as

input data for statistics and simulation.

Here are some results of investigating said data
as well as of experiments with the completed Virtual
Memory TFJ.

Basically, one printed page takes about 200000
memory accesses. This number of course grows

for m, and also for huge paragraphs. The
maximum record is held by my own prime number

plotter with 6 million accesses, followed by a certain

QC&X page with 2 million accesses. About 3

to 4 consecutive accesses are on the same 256-cell
memory page, in the average. This fact is yet to
be exploited to construct the 'very fast' memory
access.

W ' s memory access behavior itself may be

deemed "semi-local" which loosely means: of a row

of consecutive memory accesses. some portion of

them access a locally limited area. Over the long
run, the area may change, but then the new area

is another locality area. In the case of TFJ, the
access pattern is clear: the paragraph, the formula,

the one macro under construction, each make for

hh ighfkj b f h
ii ffifil i
ii ilhjf i
ii dkld f h
ije glie h
kihf hl f i
ilhkc hi j i i
jilh giijg h
iihg ilh c h
ihgkjjji jf g i
ihkkffi i g e e h

eii jlh i g i
ihdilkdi fg h
iifgklfigdif g f

ii dikgicfkh 1

fhefhfighhhkhgfdch f
dheeb e j j cbcd
dgcihfhi ggb d
bcbbhj idebegb b
dbe ehf ijhjed

fifiijhihghd d
ekichijhhccigi iegjia
djie ehgd cihi ghih
iiceikhcdcjeh cejf
i jegkkh dejdi ekgf
hh gkif cg h je
dii jlhff fh i jgg
iigkkifg jicifd hjg

chgchjjffcehee degf
chge j k j f f chhee ddf gf
deekligi ijghia kg
cdcbj jfcf gfbbbb hb
ccbbhkf e ffbb gb

b e
bd fi ej
e c h

d

Figure U: This is the memory access log over

the last three pages of a 20 page .web (containing
the index, the section list, and the TOC) using

the original memory access scheme recorded in The
W b o o k .

Each line logs, for 10000 accesses, their distri-

bution over the 256-cell memory pages. Each letter

denotes the log, of the number of accesses of that
memory page (a:l, b:2, c:4 accesses, etc.).

This picture covers ,mern's single node area

only. The right part covers the macro area and the

left part the character node area.

locality of accesses; non-locally there are macro,

font, and glue references.
Investigating swap decision algorithms, the

most important factor happened outside the swap-

per: locality gets lost over the run of printed pages.

Free list gets scrambled, and after, say. five printed
pages locality is virtually non-existent. To restore

locality, I constructed a free list sorter. Indeed.

on the P C the sorting decreased the number of
page faults by 10% under favorable conditions (100

available memory pages) to 112 under narrow con-
ditions (30 mem pages). Figures U and S, which

TUGboat, Volume 10 (1989), No. 1 17

l j k k i a e c a j a f l j f h h
k l j i

m k i
k l j h

m k i

l j k i
rn j h
mk j i

j l k i

d l j g e e i
j m k i

m j i
k l k i

f e d d e m j d f d h i
i j g c i dh e

j j
i j i d

h c j j dh

g j j j
i j j i d

j j j j j j d
j aahga i jk lkk j j i f h j i a
k k h j h
kk k i 3g
h l k i jgf
hkl j i kgg
h j l d c a j i d h j g
i k i i f h f f g f ' i j k f h
i j k j j j j h

g f
g f

klhf g a j j k j kkkj i d f ka
j l c g b b b i
ilk f f

I h j j j j k j jk jkkk j fhgf d

Figure S: This image records the memory accesses

during the same pages as in Fig. U to the same

memory area, using the same recording conventions,

but this time a free list sort is employed at the end

of every ship-out .
Note the locality visibly in effect now. Note also

the increased number of accesses vs. the decreased

number of accessed pages per Iine.

are compiled from corresponding mem access logs,

demonstrate the difference between the unsorted

and the sorted case.

Also, when I installed the free list sorter on
PCS Cadmus which now is a paging system, it
seemed to me that throughput increased by 10%

while the sorter itself adds ca. 1% of CPU time.
I would like to see this measured under controlled

conditions (Size of the Working Set? Number of

page faults?). At PCS, I cannot do that.

Memory page size of 256 cells (which is l k) is

just the right compromise. A larger size increases

the number of swaps while the average number

of consecutive accesses of the same memory page

never exceeds 4. A smaller size increases page

translation table size which is now 3.3k (Memory

page size x page translation table size = const).
When memory page size is 256 cells and mem-

ory is 512k (which is likely under Novell) then

I N I W obtains 12 pages swappable memory, and

V I R W about 120 pages. In that case, one average

I4W run takes about 100 memory page swaps per
printed page. This is a tolerable low swap rate,

I think, and so I won't spend too much time in

speeding up swapping.

1. P u b l i c w's Memory handler. Here the

two memory handling components are given in detail

since they are the central part, I think, of the P C

port. The solutions presented here may transcend

TURBOPASCAL, and may allow for porting the WEB-

to-C stuff, which is on the tape now, to small
machines. Furthermore I would like to see others

improve it.
A few details are left off, like most of the

debugs, the procedure call cross referencing needed

for TURBOPASCAL'S unit mechanism, and the
use-assembler switch, since they just clog up the

text without adding clarity.

fo rmat debug - begin

format gubed - end

format stat z begin
format tats r end

format fakebegin - begin

format falceend - end

2. For a change, TURBO allows clean memory

management due to an undoc~mented feature. This

feature is not PASCAL as defined but, at least, it is

cleaner than other constructs I saw used on 16bit
machines. (0 ye nameless compilers, get you gone
into oblivion, and speedily.) If, say, memp(x) is

a function returning a pointer of some type, then
TURBO accepts memp(x)f +- something, and it

does the right thing. This feature comes in handy
here.

define mem(#) G memp(#)f

define font-info (#) E fmemp (#) f

(Types in the outer block 2) z

p-memory-word = f memory-word;
mem-pc-index = 0 . . max-mem-piece;

mem-piece = a r r ay [mem-pc-index] of

memory-word;

p-mem-index = p-mem-min . . p-mem-max;
p-hem-index = 0 . . p-fmem-size;

18 TUGboat, Volume 10 (1989), No. 1

mem-index = mem-min . . mem-max;

fmem-index = 0 . . font-mem-size;

See also section 5.

3. Here, of course, is the original reason for just

that mem page size: these functions yield one-byte
moves. Everything else would result in some kind

of shift.

define mem-piece-size = 256

{size of a memory piece, must be 256
in order to use lo and hi)

define max-mem-piece = mem-piece-size - 1

{ min-mem-piece = 0)

define mdiv (#) = I,hll(#)
define mmod (#) = a (#)
define fdiv (#) - I,hll(#)
define fmod (#) - m(#)

4. The swapper. w ' s mem and font-info

cannot be made smaller than, say, 70000 cells or
300kB memory if T@ is to be more than a toy.

Yet, with the program proper being 180k and the
other tables somewhere around 200k, this clearly

exceeds a PC. So some form of memory pager must
be provided.

We let mem and font-info use same slot pool,

same swapper, and same external memory. Later,
when we build 64-bit w, I N I m ' s hyphenation

generator tables and/or eqtb may be included. One

would do this by record variants on contents.

We let slot space and external memory grow
with use.

define max-slots = 300

5 . Central Intelligence Agency is the page trans-

lating table. It contains entries for the page slot
allocated (or no-slot) and the external memory

index (or no-page).

define no-slot - nil

define no-page = -1

(Types in the outer block 2) +-
time-stamp = integer;

page-p = fpage-rec; slot-p = rslot-rec;

page-rec = record

{ page translation table record)
slot-ptr: slot-p; {pointer into slot allocated,

or no-slot)
ext-nr : no-page . . 511;

{ pointer into external memory)
end;

slot-rec = record

{ inline memory page descriptor)
page-ptr : page-p ;

{ pointer into page allocated)

follower: slot-p; { to simplify traversing)

stamp: time-stamp; {or the RU-bit)
contents: mem-piece ; { the actual page)
end;

6. These are the page translation tables for mem

and font-info.

(Locals for virtual memory handling 6) E

p-mem: array [p-mem-index] of page-rec;

p-font-info: array [p-fmem-index] of page-rec;

slot-rover : slot-p ;

new-slot: slot-p;

slot-count: 0 . . max-slots;

{ number of slots allocated hitherto)
page-count: 0 . . 511; {number of external pages

allocated so far)

clock: integer;

stat swap-no: integer; tats

See also sections 7 and 20

7. Our external memory is on disk. We collect

all the operations at this place so you can devise

something different if you so wish.

define write-ext-mem-end (#) =
fakebegin write (mem-file, #)
end

format write-ext-mem-end end

define write-ext-mem (#) -
begin seek (mem-file , integer (#));
write-ext -mem-end

define read-ext-mem-end (#) -
fakebegin read (mem-file , #)
end

format read-ext-mem-en,d - end

define read-ext-mem (#) -
begin seek (mem-file , integer (#));
read-ext -mem-end

define open-ext-mem = set-ext-mem-name;

assign (mem-file, name-of-file);

rewrite (mem-file);

write-eat-mem (0) (new-slot T . contents);

define close-ext-mem = close (mem-file)

(Locals for virtual memory handling 6) +-
mem-file: file of mem-piece;

8. It is convenient to pre-allocate one slot to a

convenient page, probably the mem-bot page which

is the first one to be accessed anyway. Actually,

external memory must be opened here.

define for-all-mem-pages-do r

for i t p-mem-min to p-mem-max do

format for-all-mem-pages-do xclause

define for-all-fmem-pages-do E

for i t 0 to p-fmem-size do

TUGboat, Volume 10 (1989), No. 1 19

format for-all-fmem-pages-do = xclause

define first-page-no E p-mem-min

(Get virtual memory started 8) =
{initialize entire system)

for-all-mem-pages-do
w i th p-mem[i] do

begin ext-nr +- no-page; slot-ptr +- no-slot

end ;

for-all-fmem-pages-do

w i th p-font-info [i] d o
begin ext-nr + no-page; slot-ptr + no-slot

end :

{now allocate first slot)
new (new-slot);

wi th new-slot T d o
begin follower + new-slot ;

page-ptr +- addr (p-mem Brst-page-no]);

stamp + 0;

end;
slot-rover +- new-slot; slot-count +- 1;

{ and connect it to first page, also aquire first

page of external memory)
open-ext-mem;
wi th p-mem Brst-page-no] d o

begin slot-ptr +- new-slot; ext-nr +- 0;

end ;

page-count +- 1;

clock + 0;

s t a t swap-no +- 0; t a t s

See also section 21.

9. We investigated five different swapping algo-

rithms. Essentially, they are variants of the First In

First Out (FIFO), the Least Recently Used (LRU)

and the Not Recently Used (NRU) algorithms.

- The FIFO algorithm throws out the page which

has been in memory longest.

- The LRU algorithm sets a time stamp per
access and, in case of swapping, the slot with

lowest stamp is thrown out. The subcases

concern resetting of timestamp at swap time.

- The NRU algorithm sets a stamp per access
and, in case of swapping, looks for a null stamp

and clears a selection of stamp. The subcases
concern the nature of that selection.

10. Only two of the algorithms studied so far

turned out to be worthwhile, namely the LRU
without clock reset, and the NRU following Knuth's

modification. So these two we keep. The NRU

showed ca. 5% more page faults than the LRU but

is a trifle faster in the non-page-fault access. So in
case there are few page faults and/or a fast swapper,

NRU might prove the faster, else LRU-contest is

still open.

Objection to LRU may be the fear of the clock
overflowing with huge or intricate jobs. The simple

WEB file I logged showed ca. 200000 accesses per

printed page, and, while I still wait for a chance

to log a large table or a P I O ~ X job, let's assume

1000000 accesses for a page at the worst, and
you still have two thousand pages to go! Which

leaves one to meditate on the magnitude of a 32-bit

integer.
A variant not investigated yet is to step the

clock at swap time only.
As it turned out, a PIC'&X page does take

about two million accesses, and my own Third Root

of Unity Primes Generator took six million accesses

(and 12000 swaps).

define use-LRU -
define use-LRU-end
define use-NRU - Q{
define use-NRU-end zQ)

format use-LR U = begin
format use-LRU-end - end

format use-NR U zi begin

format use-NRU-end - end

11. These procedures describe the basic, non-
swap access which must be fast. So I use wi th

to stress that fact. Actually, this might be done

in assembler, and page-ptr and slot-ptr kept in a

register for further reference.

define not-in-memory - (slot-ptr = no-slot)

define access-it (#) -
begin {a t this point, slot-ptr points

to the in-memory page)

+ addr (contents [mmod (p)]);
u s e L R U stamp + clock;

u s e L R U - e n d
u s e D R U stamp t 1; use-NRU-end

e n d

(Include system and memory management

here 11) -
(I need fetch-mem here 13)

funct ion memp(p : pointer): p-memory-word;

begin use-LRU incr (clock);

u s e L R U - e n d
wi th p-mem [mdiv (p)] d o

begin if not-in-memory t h e n

fetch-mem (addr (p-mem [mdiv (p)]));

w i th slot-ptr7 d o access-it(memp);

end;

end ;

funct ion fmemp (p : pointer): p-memory-word;

TUGboat, Volume 10 (1989), No. 1

begin useLRU incr (clock);

useLRU-end

with p-font-info [md iv (p)] do

begin if not-in-memory then

fetch-memtaddr (p-font-info Vdiv (p)])) ;

with slot-ptr T do access-ittfmemp);

end;

end;

See also sections 17 and 18.

12. We describe the basic operations for swapping.
Note the nesting of with clauses making for simpler

expressions and (hopefully) faster programs.

define secutor (#) ze # t . follower

define more-slots - ((slot-count <
max-slots) A (mem-avail > 10000))

define fakerepeat =
{syntactic sugar for WEAVE)

define fakeuntil E

format fakerepeat = repeat

format fakeuntzl - untzl

define rove-all-slots -
begin s + slot-rover;

repeat with s t do

fakeunt il

fakeend

define rove-slots-begin -
begin fakeend

define rove-slots-end r

fakebegin fakerepeat fakebegin end:

s +- secutor(s);

until s = slot-rover

end
format rove-all-slots = xclause

format rove-slots-began - begin

format rove-slots-end r end

define out-it -
with page-ptrt do

begin stat incr(swap-no); tats

write-ext-mem (ext-nr)(contents);

slot-ptr +- no-slot { disconnect page
from this slot)

end
define h i t (#) r

with # t do

begin { argument is a page pointer,

slot is on slot-rover)
slot-ptr +- slot-rover; page-ptr t #;

{ connect new page)
if ext-nr # no-page then

read-ext-mem (ext-nr)(contents)

else begin wrzte-ext-mem (page-count)
(contents);

ext-nr + page-count;

incr (page-count);

end

end

13. This describes the outline of the swapping
procedure. It is not required to be streamlined if
swaps are minimized since slow anyway. Yet some

indication is, again, given by the use of with.

(I need fetch-mem here 13) -
procedure fetch-mem(p : page-p);

var mzn-stamp: tzme-stamp; s , t : slot-p;

i: znteger;

begin if more-slots then

begin (Fetch a new slot, let slot-rover point

to it 1 4) ;

with slot-rovert do an-zt (p) ;

end

else begin {decide which page to throw out,
let slot-rover point to it)

useLRU (Use the LRU 1 5) ; useLRU-end

use3RU (Use the NRU 1 6) ; use_NRU-end

{ up ti1 now, nothing happened except

slot-rover moving around)
with slot-rover? do

begin out-zt;

{ the old page, that is. We assume, as

in our TEX, that we cannot discern

between read and write accesses)

zn-zt (p) ; { the new one)
end;

end;

end;

This code is used in section 11

14. This allocates a new slot.

(Fetch a new slot, let slot-rover point to it 14) =
begin new (new-slot);

with new-slotf do

begin follower t secutor(s1ot-rover);

slot-rover j. follower t new-slot ;

end;

incr (slot-count);

{ now the new slot is officially present)
slot-rover + secutor (slot-rover);

end

This code is used in section 13.

15. Least recently used.

(Use the LRU 15) r
begin min-stamp +- clock; t +- slot-rover;

rove-allslots

roveslots-begin if stamp < min-stamp then

begin min-stamp + stamp; t +- s;

end;

TUGboat, Volume 10 (1989): No. 1 21

roveslots-end;
slot-rover + t ;

end

This code is used in section 13.

16. Not recently used. We realize Knuth's

suggestion to switch off used-bits for those pages

only that are touched during the search process.

Pages whose bits stay on then may be termed

"recently recently used."

define recently-used(#) =- (#T.stamp # 0)

define un-use-it (#) = #T.stamp + 0

(Use the NRU 16) -
begin slot-rover + secutor(s1ot-rover);
while recently-used(s1ot-rover) do

begin un-use-it (slot-rover);
slot-rover +- secutor(s1ot-rover);

end;
end

This code is used in section 13.

17. At this place, external memory should be

closed, deleted, freed or whatever. We output
statistics.

(Include system and memory management

here 11) +G

procedure close-mem;

begin close-ext-mem;
stat wlog-cr;

wlog-ln ('took,', swap-no : 1, 'uswappingsuf or, ',
clock : 1, ~uaccessesuon') ; w l o g (~ u u u u u ~ ,

page-count : 1, -umemoryupagesuandu-,
slot-count : 1, - ,slots. ');

tats
end:

18. Reorganizing the free lists. When we
consider the various nodes strung out sequentially as

allocated from the free lists then W's access is kind
of local most of the time. It is clear: One paragraph

of text is under consideration in one period of

time, one formula, one batch of finished lines. In

a paging environment (and most of the machines
are today), such locality is an advantage: Consider

the "Working Set", the collection of memory pages

accessed during a certain period of time. With good

locality, the Working Set needs be small only, and

page faults few.

For and other programs with similar

memory management, the free list tends to be
scrambled and scattered during the first few pages

already so that any locality will be non-existent at

all. Thus the Working Set may grow about a third
again as large. The solution is to reorganize the free

list(s) at certain times such as to reflect physical

neighbourhood again.
This amounts to a Sort. A full sort, however,

is out of question, it may take up to 16 sweeps

through the list. It is not necessary even, since

there is no harm in a scramble inside a memory

page. So we do one sweep with as many buckets
as there are memory pages, then recombine. What

follows, then, is straightforward. (Really? I did

crash. Where, Dear Reader, I won't tell you. You

find out as an exercise.)
The proper place for this to be inserted is right

after the grand free-node-list at the end of ship-out.

define mem-page (#) - mdzv (#)

(Include system and memory management

here 11) +=
procedure reorganize-free-lists;

var p, q, r , s , t: pointer; thzs-tail: pointer;

i , a-p: p-mem-index;
{ indices of memory pages)

v-p-mzn. v-p-rnax, s-p-min, s-p-max:

p-mem-index; { the single and variable

free list maximum page indices found so

far)
begin debug check-mem(fa1se);

{we suppose memory to be OK at this

point, I simply want the was-free bits set for

checking later)
gubed (Initialize free list reorganization 2 2) ;

(Distribute variable size free list to the separate

slots 23);

(Recombine variable size free list 24);
(Distribute single word free list 25);

(Recombine single word free list 26) ;

debug check-mem (true);

{ Any non-trivial output here would mean

trouble, but, as it turned out, the program
crashed before reaching this point)

gubed
end;

19. define mem-page-avail G m-p-avail

{ avoiding identifier conflict)
define mem-page-tail - m-p-tail

20. (Locals for virtual memory handling 6) + Z

mem-page-avail, mem-page-tail: array
[p-mem-index] of pointer;

21. (Get virtual memory started 8) +-
for i +- p-mem-min to p-mem-max do

begin { prepare the mem page buckets)
mem-page-avail [i] +- null ;

mem-page-tail [i] + null;
end;

TUGboat, Volume 10 (1989) , No. 1

22. (Initialize free list reorganization 2 2) -
p + get-node ('1 0000000000) ;

{ re-merge them first thing right away }
v-p-min + mem-page (m e m - e n d) ;

s-p-min +- mem-page (m e m - e n d) ;

v-p-max +- mem-page (m e m - m i n) ;

s-p-max +- mem-page (m e m - m i n) ;

This code is used in section 18.

23. It appears that rover is not supposed to be
empty ever.

define insert-first-var-per-page -
begin mem-page-avail [a-p] t p;

d i n k (p) +- p; llink (p) t p;

end
define insert-var-per-page -

begin r + mem-page-avail [a -p] ;

s + llink (r) ; d i n k (s) +- p;

ll ink (p) + s ; d i n k (p) t r ;

l l ink (r) +- p;

end

(Distribute variable size free list to the separate

slots 23)
p +- rover ;

repeat q +- r l i n k (p) ; a-p +- mem-page(p) ;

if v-p-min > a-p then v-p-min + a-p;

if v-p-max < a-p then v-p-max +- a-p;

if mem-page-avail [a-p] = null then

insert-first-var-per-page

else insert-var-per-page;

P +- q ;
until p = rover ;

This code is used in section 18.

24. We clean up carefully behind us. One of those
buckets may be reused very soon.

define append-this-var-list -
begin r + mem-page-avail [i];

s + l l i n k (r) ; mem-page-avail[i] +- n u l l ;

t +- l l i n k (r o v e r) ; r l i n k (s) +- rover;

l l i n k (r o v e r) + s ; r l i n k (t) +- r ;

l l ink (r) +- t ;
end

(Recombine variable size free list 24) -
rover +- mem-page-avail [v-p-min];

mem-page-avail [v-p-min] + nul l ;

if v-p-max > v-p-min then

for i +- v-p-min + 1 to v-p-max do

if mem-page-avail[i] # nul l then

append-this-var-list ;

This code is used in section 18.

define insert-first-avail-per-page -
begin mem-page-avail[a-p] +- avai l ;

mem-page-tail [a-p] + avai l ;

link (a v a i l) +- nul l ;

end

define insert-avail-per-page

begin r +- mem-page-avail [a-p];

mem-page-avail [a-p] +- avail;

l ink(avai1) + r ;

end

(Distribute single word free list 2 5) =
while avail # nul l do

begin q + l ink(avai1);

a-p +- mem-page (a v a i l) ;

if s-p-min > a-p then s-p-min +- a-p;

if s-p-max < a-p then s-p-max +- a-p;

if mem-page-avail[a-p] = null then

insert-first-avail-per-page

else insert-avail-per-page;

avail +- q ;

end

This code is used in section 18.

26. This code works even if avail has been empty

in the first place.

define append-this-avail-list r

begin r +- mem-page-avail [i];
l ink (this- tai l) + r ;

this-tail +- mem-page-tail [i];

mem-page-avail[i] + n u l l ;

mem-page-tail [i] + n u l l ;

end

(Recombine single word free list 2 6) r

avail + mem-page-avail [s-p-min];

this-tail +- mem-page-tai l[s-p-min];

mem-page-avail [s-p-min] +- null ;

mem-page-tail [s-p-min] +- null ;

if s-p-max > s-p-min then

for i + s-p-min + 1 to s-p-max do

if mem-page-avail[i] # null then

append-this-avail-list ;

This code is used in section 18.

25. This must be considered part of the inner
loop since every single character freed after printing
gets through here.

