
TUGboat, Volume 2, No. 2

I need to do more work on thie. If .this dec ts other
sites this is something you might want to look into.

W A : PDP-10 - HAMBURG PASCAL
(BILL SCHERLIS)

(1) Some changes in the code were required in or-
der for compilation to succeed here. In particular,
the local compiler uses different conventions for PACK
and UNPACK has different switches, and does not
want a PROGRAM statement. Also, a main program
body is not required in a file for separately compiled
procedures. These changes were all fairly minor.

(2) The compiler here is not friendly to inter-
procedural GOTOs, so these were eliminated by add-
ing a new WrapUp procedure. (See the labels
endOfTEX and FinalEnd in m.) Again, this was
straightforward.

(3) Some new features were added to the lo-
cal compiler (by Andy Hisgen) to support ASCII
files and False-starts. FILE OF ASCII does the
expected thing here, except the conventions for
RESETing the terminal are somewhat different.
FalseStart is like the MACLISP SUSPEND opera-
tion: If a Pascal program calls Falsestart , then
execution is suspended and the program may be
SAVEd. When this core image is STARTed up, ex-
ecution will resume at the FalseStart call. I added
such a call to our copy of TEXPAS just before the
call to InitSysDep.

(4) The installation documentation was reason-
able, though it could be a bit more detailed in
certain areas. Examples: expected problems, the
symptoms of various bugs (e.g., not reading the
STREM file), some remarks on the control structure
of W'...

(5) Testing here has been a bit skimpy, since I
can't easily get hardcopy output.

(6) Some hacking still remains: I haven't touched
AppendtoName yet, but I expect no problems here.

Andy Hisgen suggests changing the procedure er-
ror so that ordinary letters are used ins@ of CR
and LF. Thus, the help message becomes something
like:
Type c or C to continue,

f or F t o flash error messages,
1 or . . . or 9 to dismiss the next 1 to 9

tokens of input,
i or I to insert something, x or X to quit.

instead of
Type <cr> to continue,
<lf> to f lash error messages,
1 or . . . or 9 to dismiss the next 1 to 9

tokens of input.
i or I t o insert something, x or to quit.

because having a message like this implies that the

hoat operating system will let the user type in both
CR and LF and that it will distinguish between

them. Some systems do nbt do this, either because
they don't permit it at all, or because i t ie not the
normal way of doing things on that syatem. Unix,
for example, seems to turn both CR and LF into
LF. This problem cannot just be smoothed over
in SYSDEP.PAS, because the help mesaage above
occurs in TEXPAS and because the procedure enor
in TEX.PAS is the one which actually fondles the
character8 to see if we got a CR or LF.

PRINCETON PLASMA PHYSICS LAB:
PDP-10 - HAMBURG PASCAL &
VERSATEC OUTPUT (PHIL ANDREWS)

This is about the first thing I, or anyone else here,'
have done in Pascal and I had to guess at some of
the differences between our compiler and yours.

It seems that QiJC assumes that the loader will
preset all variables to zero, however our loader in-
serts junk some of the time.

Since our compiler doesn't have enough room to
load in debug with 'l&?C it's particularly painful try-
ing to find errors.

Once I figured out how to bring up the first
release I had little trouble with the others but I
think some help could be given. The major problem
with compiling was the sheer size of TM.PAS and
TEXPRE.PAS which forced changes in our com-
piler.

As of May 9 I have the latest version of
up and running and have no outstanding bugs.
Our interface to a 100pt/inch Versatec is working
satisfactorily and we are hoping to obtain the use
of 200pt/inch Versatec in the near future. I am
presently supporting 'QjX a t General Atomic at San
Diego also, our spooler only required a slight change
to run there.

'I@ AND HYPHENATION

m* M. LLng

Word hyphenation is a useful feature of any com-
puterized document formatting system. Sometimes
it is also one of the most embarrassing.*

The current hyphenation algorithm was de-
veloped by Prof. Knuth and myself in the summer
of 1977. Our goal was to come up with a reasonably
compact algorithm that would find a significant per-
centage of possible hyphenation points, but would
make very few errors. The algorithm is described
in Appendix H of the l$jX manual. Note that

*If you find any such embarranting hyphenations done by
m, you are encouraged to send them to the author.

TUGboat, Volume 2, No. 2

there have been quite a few minor change8 eince the
original printing of the m d ; these are described
in the errata file.

Baeidy, the algorithm has four types of rules:
(1) Prefix removal (e.g. corn-, dis-, ex-), (2)
S& removal (e.g. -able, -ful, -tion), (3) Vowel-
eonsonantconsonantvowel rule (can usually split
between the consonants), and (4) Exception table
(about 300 entries). Actually, these parts are a p
plied in the order (4), (2), (I), (3); this order is rather
important because of the interaction between rules.
For example, the horse- prefix was put in not so

much because we were concerned about hyphenat
ing words like horse-power correctly, but rather to
avoid hyphenating them incorrectly (the vccv rule
(3) would break hor-seporer).

The rules were mostly found by hand. Good
prefixes were found by looking through a diction-
ary; s d x e s by looking through a reverse diction-
ary. Other ad hoc rules were discovered aa the devel-
opment proceeded (break vowel-q, break after ck).

Hawever, as good computer scientists, we then used
8n on-line copy of the American Heritage Dictionary
(at Xerox PARC) to test our rules. This testing had
two purposes: (1) to determine which pain of con-
sonants should be split under the vccv rule, and (2)
to generate a list of exceptions to the rules. The ex-
ception list originally contained thousands of words,
but was pruned down to just a few hundred. Also,
in some eases new rules were formulated to take care
of large classes of exceptions.

How well does the algorithm work in practice?
Quite well, it seema. Quantitatively, in a test on
a pocket dictionary word list, the algorithm found
about 40% of the allowable hyphen points, with
about 1% in error. Furthermore, the hyphen points
found were usually the most reasonable or "goodn
placea to break the word. In practice, the algo-
rithm almost never makes a glaring mistake, while
at the same time the user does not very often need to
specify explicit (discretionary) hyphens, unless the
columns are very narrow (or letters very wide).

The aigorithm takes about 4K 36-bit words of
code, including the exception dictionary.

A note on the implementation: If the algorithm
is programmed by sequentially checking each of the
rules to see if it applies, it will run rather slowly.
Uthg a hash table would impruve things,, but a

. faster and more compact way is to use a version of a
h i t e state machine. Interested readers should look
at the actual code.
Timemagaline algorithm .

Thia is reputedly the moet widely used hyphenat
tion algorithm (of &ptable quality). The idea ie to

decide whether or not to split a word based on four
let- ur-yz around the potential hyphen point.
However, this would require storing a table of 26' =
456,976 bits, which is excessive. (Actually, only
about 10-15% of these Cletter patterns actually oc-

cur iq English words, but it seems the storage would
still be considerable.)

Instead, the algorithm uses three tables of sine
26' = 676, corresponding to the pairs rr, xy, and

yz. The origin of these tables seems to have been
forgotten, but they are supposed to represent the
conditional probability of a break given that the firat
two, middle two, or last two letters, respectively,
are a particular pair. To decide whether to break
at a given point, the values for the three pairs are
looked up, multiplied together (aa if they were inde-
pendent probabilities, which they are not), and then
compared to a threshold.

Adjusting the threehold obviously changes the
performance of the algorithm. One estimate is: 40%
hyphens found with 10% error. In any case a large
exception dictionmy will be required for good per-
formance. One reason for this is that looking a t
just four letters around the potential hyphen point is
not suacient. The author has discovered examples
where one must look aa much as 7 letters ahead (!)
to determine hyphenation (consider def -i-ni-tion
vs. de-f in-i-tive).
Patterns

Currently the l'@ project (more precisely, me)
is conducting research into better hyphenation dgo-
rithms. In particular, I am investigating a method
baaed on the idea of hyphenating and inhibiting pat-
terns. For example, a hyphenating pattern might
be -tion, indicating that whenever t ion occurs in
a word, we can hyphenate immediately bdore it.
Another good example is c-c. Note that hyphenat-
ing patterns are a generalization of the prefix? suffix,
and vccv rules discussed above.

In addition, the idea of inhibiting rules has proved
usefuk. Such rules formalize the notion of "we can
usually hyphenate such and such a pattern, except
when it is followed by . . ." . Also, such rules are often
useful for handling classes of exceptions.

More importantly, we hope to be able to extract
the rules automatically from an on-line dictioxmy.
T h i ~ will be done by collecting statistics on the
effectiveness of all possible patterns, and then wing
some heuristics to choose a good set of patterns.
Preliminary experiments with this approach indi-
cate that it will be very effective. For example, a
set of about 3300 hyphenating and 2700 inhibiting
patterns geta 85% of the hyphens with WO error.

